Cur@SF NPs alleviate Friedreich’s ataxia in a mouse mannequin by way of synergistic iron chelation and antioxidation | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, et al. Friedreich’s ataxia: autosomal recessive illness attributable to an intronic GAA triplet repeat enlargement. Science. 1996;271:1423–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Gerber J, Muhlenhoff U, Lill R. An interplay between frataxin and Isu1/Nfs1 that’s essential for Fe/S cluster synthesis on Isu1. EMBO Rep. 2003;4:906–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stepanova A, Magrane J. Mitochondrial dysfunction in neurons in Friedreich’s ataxia. Mol Cell Neurosci. 2020;102:103419.

    CAS 
    PubMed 

    Google Scholar
     

  • Koeppen AH, Davis AN, Morral JA. The cerebellar element of Friedreich’s ataxia. Acta Neuropathol. 2011;122:323–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, Koeppen AH. Iron and iron-responsive proteins within the cardiomyopathy of Friedreich’s ataxia. Cerebellum. 2006;5:257–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Harding AE. Friedreich’s ataxia: a medical and genetic examine of 90 households with an evaluation of early diagnostic standards and intrafamilial clustering of medical options. Mind. 1981;104:589–620.

    CAS 
    PubMed 

    Google Scholar
     

  • Weidemann F, Rummey C, Bijnens B, Stork S, Jasaityte R, Dhooge J, Baltabaeva A, Sutherland G, Schulz JB, Meier T. Mitochondrial Safety with Idebenone in Cardiac or Neurological Consequence examine g: The guts in Friedreich ataxia: definition of cardiomyopathy, illness severity, and correlation with neurological signs. Circulation. 2012;125:1626–34.

    PubMed 

    Google Scholar
     

  • Raman SV, Phatak Ok, Hoyle JC, Pennell ML, McCarthy B, Tran T, Prior TW, Olesik JW, Lutton A, Rankin C, et al. Impaired myocardial perfusion reserve and fibrosis in Friedreich ataxia: a mitochondrial cardiomyopathy with metabolic syndrome. Eur Coronary heart J. 2011;32:561–7.

    PubMed 

    Google Scholar
     

  • Rajagopalan B, Francis JM, Cooke F, Korlipara LV, Blamire AM, Schapira AH, Madan J, Neubauer S, Cooper JM. Evaluation of the elements influencing the cardiac phenotype in Friedreich’s ataxia. Mov Disord. 2010;25:846–52.

    PubMed 

    Google Scholar
     

  • Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M. Mouse fashions for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency adopted by intramitochondrial iron deposits. Nat Genet. 2001;27:181–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Seguin A, Santos R, Ache D, Dancis A, Camadro JM, Lesuisse E. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae missing the yeast frataxin homologue (YFH1). J Biol Chem. 2011;286:6071–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Whitnall M, Suryo Rahmanto Y, Huang ML, Saletta F, Lok HC, Gutierrez L, Lazaro FJ, Fleming AJ, St Pierre TG, Mikhael MR, et al. Identification of nonferritin mitochondrial iron deposits in a mouse mannequin of Friedreich ataxia. Proc Natl Acad Sci U S A. 2012;109:20590–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SY, Napierala M, Napierala JS. Therapeutic prospects for Friedreich’s ataxia. Traits Pharmacol Sci. 2019;40:229–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandolfo M, Arpa J, Delatycki MB, Le Quan Sang KH, Mariotti C, Munnich A, Sanz-Gallego I, Tai G, Tarnopolsky MA, Taroni F, et al. Deferiprone in Friedreich ataxia: a 6-month randomized managed trial. Ann Neurol. 2014;76:509–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Parkinson MH, Schulz JB, Giunti P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):125–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, Zheng Y, El-Toni AM, Atta NF, Galal A, et al. Neutrophil-like Cell-Membrane-Coated Nanozyme Remedy for Ischemic Mind Injury and Lengthy-Time period Neurological Purposeful Restoration. ACS Nano. 2021;15:2263–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Cai X, Zhang Ok, Xie X, Zhu X, Feng J, Jin Z, Zhang H, Tian M, Chen H. Self-assembly hole manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials. 2020;231:119678.

    CAS 
    PubMed 

    Google Scholar
     

  • Hou W, Ye C, Chen M, Gao W, Xie X, Wu J, Zhang Ok, Zhang W, Zheng Y, Cai X. Excavating bioactivities of nanozyme to rework microenvironment for safeguarding chondrocytes and delaying osteoarthritis. Bioact Mater. 2021;6:2439–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Yin Y, Zhang W, Li H, Wang T, Yin H, Solar L, Su C, Zhang Ok, Xu H. Reactive oxygen species scavenging and irritation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis. J Nanobiotechnology. 2021;19:161.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monroy A, Lithgow GJ, Alavez S. Curcumin and neurodegenerative ailments. BioFactors. 2013;39:122–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao Y, Wilkinson JT, Christine Pietsch E, Buss JL, Wang W, Planalp R, Torti FM, Torti SV. Iron chelation within the organic exercise of curcumin. Free Radic Biol Med. 2006;40:1152–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S, Maleki Dizaj S. Anti-microbial exercise of curcumin nanoformulations: New developments and future views. Phytother Res. 2020;34:1926–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Ok, Tu M, Gao W, Cai X, Tune F, Chen Z, Zhang Q, Wang J, Jin C, Shi J, et al. Hole prussian blue nanozymes drive neuroprotection towards ischemic stroke by way of attenuating oxidative stress, counteracting irritation, and suppressing cell apoptosis. Nano Lett. 2019;19:2812–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng LS, Dou CR, Xia YG, Li BH, Zhao MY, El-Toni AM, Atta NF, Zheng YY, Cai XJ, Wang Y, et al. Enhancement of nanozyme permeation by endovascular interventional therapy to stop vascular restenosis by way of macrophage polarization modulation. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202006581.

    Article 
    PubMed Central 

    Google Scholar
     

  • Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Antibacterial adhesive injectable hydrogels with speedy self-healing, extensibility and compressibility as wound dressing for joints pores and skin wound therapeutic. Biomaterials. 2018;183:185–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Cao H, Duan L, Zhang Y, Cao J, Zhang Ok. Present hydrogel advances in physicochemical and organic response-driven biomedical utility variety. Sign Transduct Goal Ther. 2021;6:426.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alibolandi M, Mohammadi M, Taghdisi SM, Ramezani M, Abnous Ok. Fabrication of aptamer embellished dextran coated nano-graphene oxide for focused drug supply. Carbohydr Polym. 2017;155:218–29.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Hao Z, Yu S, De Moraes CG, Suh LH, Zhao X, Lin Q. An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201905202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. Silk fibroin nanoparticle as a novel drug supply system. J Management Launch. 2015;206:161–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Jiang X, Chen X, Shao Z, Yang W. Doxorubicin-loaded magnetic silk fibroin nanoparticles for focused remedy of multidrug-resistant most cancers. Adv Mater. 2014;26:7393–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Xu L, Li G, Yang Y. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids Surf B Biointerfaces. 2019;173:689–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Liu Y, Shang L, Cai J, Wu J, Zhang W, Pu X, Dong W, Qiao T, Li Ok. Iron regulatory protein 2 modulates the swap from cardio glycolysis to oxidative phosphorylation in mouse embryonic fibroblasts. Proc Natl Acad Sci U S A. 2019;116:9871–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Cai J, Shen J, Dong W, Xu L, Fang M, Lin Y, Liu J, Ding Y, Qiao T, Li Ok. SS-31 efficacy in a mouse mannequin of Friedreich ataxia by upregulation of frataxin expression. Hum Mol Genet. 2021. https://doi.org/10.1093/hmg/ddab232.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beneduci A, Corrente GA, Marino T, Aiello D, Bartella L, Di Donna L, Napoli A, Russo N, Romeo I, Furia E. Perception on the chelation of aluminum(III) and iron(III) by curcumin in aqueous answer. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111805.

    Article 

    Google Scholar
     

  • Rainey NE, Moustapha A, Saric A, Nicolas G, Sureau F, Petit PX. Iron chelation by curcumin suppresses each curcumin-induced autophagy and cell demise along with iron overload neoplastic transformation. Cell Loss of life Discov. 2019. https://doi.org/10.1038/s41420-019-0234-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19:20091–112.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar YX, Shi FF, Niu YJ, Zhang Y, Xiong F. Fe3O4@OA@Poloxamer nanoparticles decrease triglyceride in hepatocytes by way of liposuction impact and nano-enzyme impact. Colloids Surf B-Biointerfaces. 2019. https://doi.org/10.1016/j.colsurfb.2019.110528.

    Article 
    PubMed 

    Google Scholar
     

  • Solar Y, Xu L, Liu X, Shen Y, Zhang Y, Gu N, Xiong F. Coronal relay reactor Fe3O4@CeO2 for accelerating ROS axial conversion by way of enhanced Enzyme-like impact and relay impact. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2021.132303.

    Article 
    PubMed 

    Google Scholar
     

  • Mandel S, Amit T, Bar-Am O, Youdim MBH. Iron dysregulation in Alzheimer’s illness: Multimodal mind permeable iron chelating medication, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory actions as therapeutic brokers. Prog Neurobiol. 2007;82:348–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LKS, Patel DK, et al. Curcumin-loaded nanoparticles potently induce grownup neurogenesis and reverse cognitive deficits in alzheimer’s illness mannequin by way of canonical wnt/beta-catenin pathway. ACS Nano. 2014;8:76–103.

    CAS 

    Google Scholar
     

  • Ward RJ, Dexter DT, Crichton RR. Neurodegenerative ailments and therapeutic methods utilizing iron chelators. J Hint Elem Med Biol. 2015;31:267–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Anjomani Virmouni S, Sandi C, Al-Mahdawi S, Pook MA. Mobile, molecular and useful characterisation of YAC transgenic mouse fashions of Friedreich ataxia. PLoS ONE. 2014;9:e107416.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Y, Liu X, Wang L, Xu L, Liu Ok, Xu L, Shi F, Zhang Y, Gu N, Xiong F. Excessive-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater. 2022;10:117–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Xie X, Zhao J, Gao W, Chen J, Hu B, Cai X, Zheng Y. Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis by way of inhibiting TLRs/NF-kappaB signaling pathway. Theranostics. 2021;11:3213–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D’Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, et al. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the most cancers cell demise/survival final result in line with p53 standing. J Exp Clin Most cancers Res. 2020;39:122.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma CS, Lv QM, Zhang KR, Tang YB, Zhang YF, Shen Y, Lei HM, Zhu L. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung most cancers cells. Acta Pharmacol Sin. 2021;42:613–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin XY, Bai DP, Wei ZX, Zhang Y, Huang YF, Deng H, Huang XH. Curcumin attenuates oxidative stress in RAW264.7 cells by growing the exercise of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0216711.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Xu L, Zhao H, Li Ok. Mammalian mitochondrial iron–sulfur cluster biogenesis and switch and associated human ailments. Biophysics Stories. 2021;7:127–41.

    CAS 

    Google Scholar
     

  • Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis. 2019;132:104606.

    CAS 
    PubMed 

    Google Scholar
     

  • Lynch DR, Farmer G. Mitochondrial and metabolic dysfunction in Friedreich ataxia: replace on pathophysiological relevance and medical interventions. Neuronal Sign. 2021. https://doi.org/10.1042/NS20200093.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, Boesch S, Nachbauer W, Mariotti C, Mathews KD, et al. Security and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Research). Ann Neurol. 2021;89:212–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Ok. Iron pathophysiology in Friedreich’s ataxia. Adv Exp Med Biol. 2019;1173:125–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Shin JW, Chun KS, Kim DH, Kim SJ, Kim SH, Cho NC, Na HK, Surh YJ. Curcumin induces stabilization of Nrf2 protein by way of Keap1 cysteine modification. Biochem Pharmacol. 2020;173:113820.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan Y, Chen Y, Liu Z, Cai F, Niu W, Tune L, Liang H, Su Z, Yu B, Yan F. Mind supply of curcumin by way of low-intensity ultrasound-induced blood-brain barrier opening by way of lipid-PLGA nanobubbles. Int J Nanomedicine. 2021;16:7433–47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao W, Yu XR, Peng SJ, Luo Y, Li JC, Lu LG. Development of nanomaterials as distinction brokers or probes for glioma imaging. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-00866-9.

    Article 

    Google Scholar
     

  • Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y, Pu Ok. Second near-infrared photothermal semiconducting polymer nanoadjuvant for enhanced most cancers immunotherapy. Adv Mater. 2021;33:e2003458.

    PubMed 

    Google Scholar
     

  • Fang Y, Li HY, Yin HH, Xu SH, Ren WW, Ding SS, Tang WZ, Xiang LH, Wu R, Guan X, Zhang Ok. Radiofrequency-sensitive longitudinal rest tuning technique enabling the visualization of radiofrequency ablation intensified by magnetic composite. ACS Appl Mater Interfaces. 2019;11:11251–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Advantages of curcumin in mind issues. BioFactors. 2019;45:666–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram JR, Poore CP, Sulaimee NHB, Pareek T, Cheong WF, Wenk MR, Pant HC, Frautschy SA, Low CM, Kesavapany S. Curcumin ameliorates neuroinflammation, neurodegeneration, and reminiscence deficits in p25 transgenic mouse mannequin that bears hallmarks of Alzheimer’s illness. J Alzheimers Dis. 2017;60:1429–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.