Engineered extracellular vesicles: potentials in most cancers mixture remedy | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, Li L. The rising roles of extracellular vesicles as communication autos inside the tumor microenvironment and past. Entrance Endocrinol. 2017;8:194.


    Google Scholar
     

  • Maacha S, Bhat AA, Jimenez L, Raza A, Haris M, Uddin S, Grivel JC. Extracellular vesicles-mediated intercellular communication: roles within the tumor microenvironment and anti-cancer drug resistance. Mol Most cancers. 2019;18:55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT, Le MT. Extracellular vesicles as pure therapeutic brokers and innate drug supply techniques for most cancers remedy: current advances, present obstacles, and challenges for scientific translation. Semin Most cancers Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.08.007.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J, Santos HA. Engineered extracellular vesicles for most cancers remedy. Adv Mater. 2021;33:e2005709.

    PubMed 

    Google Scholar
     

  • Vader P, Mol E, Pasterkamp G, Schiffelers R. Extracellular vesicles for drug supply. Adv Drug Deliv Rev. 2016;106:148–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Su C. Design methods and software progress of therapeutic exosomes. Theranostics. 2019;9:1015–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, Vader P. Extracellular vesicles as drug supply techniques: why and the way? Adv Drug Deliv Rev. 2020;159:332–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, et al. Extracellular vesicle in vivo biodistribution is decided by cell supply, route of administration and concentrating on. J Extracell Vesicles. 2015;4:26316.

    PubMed 

    Google Scholar
     

  • Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15:1212–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veerman RE, Güçlüler Akpinar G, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles—capabilities and therapeutic purposes. Tendencies Mol Med. 2019;25:382–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma J, Zhang H, Tang Ok, Huang B. Tumor-derived microparticles in tumor immunology and immunotherapy. Eur J Immunol. 2020;50:1653–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Q, Bie N, Yong T, Tang Ok, Shi X, Wei Z, Jia H, Zhang X, Zhao H, Huang W, et al. The softness of tumour-cell-derived microparticles regulates their drug-delivery effectivity. Nat Biomed Eng. 2019;3:729–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Y, Yu D. Tumor microenvironment as a therapeutic goal in most cancers. Pharmacol Ther. 2021;221:107753.

    CAS 
    PubMed 

    Google Scholar
     

  • Qin SY, Cheng YJ, Lei Q, Zhang AQ, Zhang XZ. Combinational technique for high-performance most cancers chemotherapy. Biomaterials. 2018;171:178–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Patel SA, Minn AJ. Mixture most cancers remedy with immune checkpoint blockade: mechanisms and techniques. Immunity. 2018;48:417–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaverdian N, Lisberg AE, Bornazyan Ok, Veruttipong D, Goldman JW, Formenti SC, Garon EB, Lee P. Earlier radiotherapy and the scientific exercise and toxicity of pembrolizumab within the remedy of non-small-cell lung most cancers: a secondary evaluation of the KEYNOTE-001 part 1 trial. Lancet Oncol. 2017;18:895–903.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung most cancers. N Engl J Med. 2018;378:2078–92.

    CAS 
    PubMed 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    PubMed 

    Google Scholar
     

  • Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, et al. Microvesicles in vascular homeostasis and ailments. Place Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost. 2017;117:1296–316.

    PubMed 

    Google Scholar
     

  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and buddies. J Cell Biol. 2013;200:373–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng F, Fussenegger M. Shedding mild on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2020;8:2003505.


    Google Scholar
     

  • Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, de Almeida LP. Extracellular vesicles: novel promising supply techniques for remedy of mind ailments. J Management Launch. 2017;262:247–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as sensible nanoscale therapeutics. ACS Nano. 2017;11:69–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijmans SAA, Stremersch S, Braeckmans Ok, de Smedt SC, Hendrix A, Wooden MJA, Schiffelers RM, Raemdonck Ok, Vader P. Electroporation-induced siRNA precipitation obscures the effectivity of siRNA loading into extracellular vesicles. J Management Launch. 2013;172:229–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug supply autos for Parkinson’s illness remedy. J Management Launch. 2015;207:18–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al. Improvement of exosome-encapsulated paclitaxel to beat MDR in most cancers cells. Nanomedicine. 2016;12:655–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Energetic loading into extracellular vesicles considerably improves the mobile uptake and photodynamic impact of porphyrins. J Management Launch. 2015;205:35–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang X, Xiang X, Grizzle W, Solar D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, et al. Remedy of mind inflammatory ailments by delivering exosome encapsulated anti-inflammatory medicine from the nasal area to the mind. Mol Ther. 2011;19:1769–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med. 2015;74:266–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q. NRP-1 focused and cargo-loaded exosomes facilitate simultaneous imaging and remedy of glioma in vitro and in vivo. Biomaterials. 2018;178:302–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan X, Liang Z, Li J, Wang S, Kong F, Xu Ok, Tang B. Energetic-site-matched fluorescent probes for fast and direct detection of vicinal-sulfydryl-containing peptides/proteins in dwelling cells. Chemistry. 2015;21:2117–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao H, Zhao B, Wu L, Xiao H, Ding Ok, Zheng C, Track Q, Solar L, Wang L, Zhang Z. Amplified most cancers immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment. ACS Nano. 2019;13:12553–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Fan Z, Xiao Ok, Lin J, Liao Y, Huang X. Functionalized DNA allows programming exosomes/vesicles for tumor imaging and remedy. Small. 2019;15:e1903761.

    PubMed 

    Google Scholar
     

  • Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J. Exosome-liposome hybrid nanoparticles ship CRISPR/Cas9 system in MSCs. Adv Sci. 2018;5:1700611.


    Google Scholar
     

  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of customized biogenic drug supply techniques. ACS Nano. 2018;12:6830–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, López-López R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for focused most cancers drug supply. J Nanobiotechnol. 2019;17:85.


    Google Scholar
     

  • Pan S, Zhang Y, Huang M, Deng Z, Zhang A, Pei L, Wang L, Zhao W, Ma L, Zhang Q, Cui D. Urinary exosomes-based engineered nanovectors for homologously focused chemo-chemodynamic prostate most cancers remedy by way of abrogating EGFR/AKT/NF-kB/IkB signaling. Biomaterials. 2021;275:120946.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng G, Li W, Ha L, Han X, Hao S, Wan Y, Wang Z, Dong F, Zou X, Mao Y, Zheng SY. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for cover and intracellular supply of biofunctional proteins. J Am Chem Soc. 2018;140:7282–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Zhang W, Li Y, Chang J, Tian F, Zhao F, Ma Y, Solar J. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated concentrating on. Nano Lett. 2019;19:7836–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and supply effectivity of unmodified tumor-derived exosomes. J Management Launch. 2015;199:145–55.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Yao Ok, Huuskes BM, Shen HH, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Smart AF, Ricardo SD. Mesenchymal stem cells ship exogenous microRNA-let7c by way of exosomes to attenuate renal fibrosis. Mol Ther. 2016;24:1290–301.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno S, Takanashi M, Sudo Ok, Ueda S, Ishikawa A, Matsuyama N, Fujita Ok, Mizutani T, Ohgi T, Ochiya T, et al. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21:185–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Lv Q, Cheng L, Lu Y, Zhang X, Wang Y, Deng J, Zhou J, Liu B, Liu J. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved remedy of metastatic peritoneal most cancers. Adv Sci. 2020;7:2000515.

    CAS 

    Google Scholar
     

  • Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, Wang X, Li Y, Liu S, Zhang S, et al. Autologous tumor cell-derived microparticle-based focused chemotherapy in lung most cancers sufferers with malignant pleural effusion. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat5690.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Housman G, Byler S, Heerboth S, Lapinska Ok, Longacre M, Snyder N, Sarkar S. Drug resistance in most cancers: an outline. Cancers. 2014;6:1769–92.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: physiological ideas and nanomedical options. Adv Drug Deliv Rev. 2013;65:1852–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saraswathy M, Gong S. Totally different methods to beat multidrug resistance in most cancers. Biotechnol Adv. 2013;31:1397–407.

    CAS 
    PubMed 

    Google Scholar
     

  • Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR Jr, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry methods to find P-glycoprotein inhibitors: an replace. Drug Resist Updat. 2020;49:100681.

    PubMed 

    Google Scholar
     

  • Wang T, Luo Y, Lv H, Wang J, Zhang Y, Pei R. Aptamer-based erythrocyte-derived mimic vesicles loaded with siRNA and doxorubicin for the focused remedy of multidrug-resistant tumors. ACS Appl Mater Interfaces. 2019;11:45455–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma J, Zhang Y, Tang Ok, Zhang H, Yin X, Li Y, Xu P, Solar Y, Ma R, Ji T, et al. Reversing drug resistance of sentimental tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26:713–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin X, Ma J, Liang X, Tang Ok, Liu Y, Yin X, Zhang Y, Zhang H, Xu P, Chen D, et al. Pre-instillation of tumor microparticles enhances intravesical chemotherapy of nonmuscle-invasive bladder most cancers by way of a lysosomal pathway. Biomaterials. 2017;113:93–104.

    CAS 
    PubMed 

    Google Scholar
     

  • Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, Hakeem A, Hu J, Gan L, Santos HA, Yang X. Tumor exosome-based nanoparticles are environment friendly drug carriers for chemotherapy. Nat Commun. 2019;10:3838.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Ye Z, Xiang M, Chang B, Cui J, Ji T, Zhao L, Li Q, Deng Y, Xu L, et al. Purposeful extracellular vesicles engineered with lipid-grafted hyaluronic acid successfully reverse most cancers drug resistance. Biomaterials. 2019;223:119475.

    CAS 
    PubMed 

    Google Scholar
     

  • Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, Horiguchi J. Latest developments in microRNA analysis into breast most cancers with explicit give attention to the associations between microRNAs and intrinsic subtypes. J Hum Genet. 2017;62:15–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Su X, Bai H, Zhao J, Duan J, An T, Zhuo M, Wang Z, Wu M, Li Z, et al. Identification of plasma microRNA profiles for major resistance to EGFR-TKIs in superior non-small cell lung most cancers (NSCLC) sufferers with EGFR activating mutation. J Hematol Oncol. 2015;8:127.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani KM, Alder H, Amadori D, Patel T, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA. 2010;107:21098–103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penna E, Orso F, Taverna D. miR-214 as a key hub that controls most cancers networks: small participant, a number of capabilities. J Make investments Dermatol. 2015;135:960–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si Ok, Solar B, Chen B, Xiao Z. Engineered exosomes for focused co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon most cancers. J Nanobiotechnol. 2020;18:10.

    CAS 

    Google Scholar
     

  • Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G, Ba Y. Exosomes function nanoparticles to ship anti-miR-214 to reverse chemoresistance to cisplatin in gastric most cancers. Mol Ther. 2018;26:774–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau Ok, Bermudez A, Habte F, Pitteri SJ, Sinclair R, et al. Tumor cell-derived extracellular vesicle-coated nanocarriers: an environment friendly theranostic platform for the cancer-specific supply of anti-miR-21 and imaging brokers. ACS Nano. 2018;12:10817–32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu Y, Li J, Pu Ok. Second near-infrared absorbing brokers for photoacoustic imaging and photothermal remedy. Small Strategies. 2019. https://doi.org/10.1002/smtd.201900553.

    Article 

    Google Scholar
     

  • Spiliotis J, Halkia E, de Bree E. Remedy of peritoneal floor malignancies with hyperthermic intraperitoneal chemotherapy-current views. Curr Oncol. 2016;23:e266-275.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal efficiency for tumor multimodal remedies. Adv Sci. 2018;5:1800510.


    Google Scholar
     

  • Zhang Z, Wang J, Chen C. Close to-infrared light-mediated nanoplatforms for most cancers thermo-chemotherapy and optical imaging. Adv Mater. 2013;25:3869–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Qin X, Wu T, Qiao Q, Track Q, Zhang Z. Extracellular vesicles primarily based self-grown gold nanopopcorn for combinatorial chemo-photothermal remedy. Biomaterials. 2019;197:220–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Yao Y, He J, Zhong X, Li B, Rao S, Yu H, He S, Feng X, Xu T, et al. Engineered cell-derived microparticles Bi(2)Se(3)/DOX@MPs for imaging guided synergistic photothermal/low-dose chemotherapy of most cancers. Adv Sci. 2020;7:1901293.

    CAS 

    Google Scholar
     

  • Zhu L, Wang C, Pang DW, Zhang ZL. Managed launch of therapeutic brokers with near-infrared laser for synergistic photochemotherapy towards cervical most cancers. Anal Chem. 2019;91:6555–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian R, Wang Z, Niu R, Wang H, Guan W, Chang J. Tumor exosome mimicking nanoparticles for tumor combinatorial chemo-photothermal remedy. Entrance Bioeng Biotechnol. 2020;8:1010.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral most cancers gene remedy: supply cascade and vector nanoproperty integration. Adv Drug Deliv Rev. 2017;115:115–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M. Spatiotemporal management of CRISPR/Cas9 gene enhancing. Sign Transduct Goal Ther. 2021;6:238.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SM, Yang Y, Oh SJ, Hong Y, Search engine optimization M, Jang M. Most cancers-derived exosomes as a supply platform of CRISPR/Cas9 confer most cancers cell tropism-dependent concentrating on. J Management Launch. 2017;266:8–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Montero J, Letai A. Why do BCL-2 inhibitors work and the place ought to we use them within the clinic? Cell Loss of life Differ. 2018;25:56–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Dong D, Yu ZL, Zhao YF, Pang DW, Zhang ZL. Folate-engineered microvesicles for enhanced goal and synergistic remedy towards breast most cancers. ACS Appl Mater Interfaces. 2017;9:5100–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for environment friendly, focused, and protected most cancers remedy. Adv Drug Deliv Rev. 2016;98:3–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Gupta J, Safdari HA, Hoque M. Nanoparticle mediated most cancers immunotherapy. Semin Most cancers Biol. 2021;69:307–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zhang R, Xu ZP. Nanoparticle-based nanomedicines to advertise most cancers immunotherapy: current advances and future instructions. Small. 2019;15:e1900262.

    PubMed 

    Google Scholar
     

  • Inexperienced JJ, Elisseeff JH. Mimicking organic performance with polymers for biomedical purposes. Nature. 2016;540:386–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda H, Nakamura H, Fang J. The EPR impact for macromolecular drug supply to stable tumors: enchancment of tumor uptake, decreasing of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Ok, Ye H, Zhang X, Wang X, Yang B, Luo C, Zhao Z, Zhao J, Lu Q, Zhang H, et al. An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast most cancers metastasis inhibition. Biomaterials. 2020;257:120224.

    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C, Feng J. Engineering macrophage-derived exosomes for focused chemotherapy of triple-negative breast most cancers. Nanoscale. 2020;12:10854–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al. Prospects for combining focused and standard most cancers remedy with immunotherapy. Nat Rev Most cancers. 2017;17:286–301.

    CAS 
    PubMed 

    Google Scholar
     

  • Smyth MJ, Ngiow SF, Ribas A, Teng MW. Mixture most cancers immunotherapies tailor-made to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–58.

    CAS 

    Google Scholar
     

  • Lindenbergh MFS, Stoorvogel W. Antigen presentation by extracellular vesicles from skilled antigen-presenting cells. Annu Rev Immunol. 2018;36:435–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan W, Jiang S. Immune cell-derived exosomes within the cancer-immunity cycle. Tendencies Most cancers. 2020;6:506–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, Jeong GJ, Kwon SP, Track SY, Go S, et al. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. ACS Nano. 2018;12:8977–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto A, Asuka M, Takahashi Y, Takakura Y. Antitumor immunity by small extracellular vesicles collected from activated dendritic cells by way of efficient induction of mobile and humoral immune responses. Biomaterials. 2020;252:120112.

    CAS 
    PubMed 

    Google Scholar
     

  • Nikfarjam S, Rezaie J, Kashanchi F, Jafari R. Dexosomes as a cell-free vaccine for most cancers immunotherapy. J Exp Clin Most cancers Res. 2020;39:258.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for most cancers remedy. J Clin Make investments. 2016;126:1224–32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu W, Lei C, Liu S, Cui Y, Wang C, Qian Ok, Li T, Shen Y, Fan X, Lin F, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour results and low toxicity. Nat Commun. 2019;10:4355.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes within the tumor microenvironment. Annu Rev Pathol. 2021;16:93–122.

    CAS 
    PubMed 

    Google Scholar
     

  • DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of motion of standard and focused anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39:74–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell demise in most cancers and infectious illness. Nat Rev Immunol. 2017;17:97–111.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials. 2021;268:120546.

    CAS 
    PubMed 

    Google Scholar
     

  • Chang M, Hou Z, Wang M, Li C, Lin J. Latest advances in hyperthermia therapy-based synergistic immunotherapy. Adv Mater. 2021;33:e2004788.

    PubMed 

    Google Scholar
     

  • Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Concentrating on immunogenic most cancers cell demise by photodynamic remedy: previous, current and future. J Immunother Most cancers. 2021. https://doi.org/10.1136/jitc-2020-001926.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto A, Marangon I, Méreaux J, Nicolás-Boluda A, Lavieu G, Wilhelm C, Sarda-Mantel L, Silva AKA, Pocard M, Gazeau F. Immune reprogramming precision photodynamic remedy of peritoneal metastasis by scalable stem-cell-derived extracellular vesicles. ACS Nano. 2021;15:3251–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng L, Zhang X, Tang J, Lv Q, Liu J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 sign for mixed photothermal remedy and most cancers immunotherapy. Biomaterials. 2021;275:120964.

    CAS 
    PubMed 

    Google Scholar
     

  • Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the remedy of most cancers: scientific affect and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones KI, Tiersma J, Yuzhalin AE, Gordon-Weeks AN, Buzzelli J, Im JH, Muschel RJ. Radiation mixed with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med. 2018. https://doi.org/10.15252/emmm.201809342.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, Su R, Hong L, Lu H, Zhang F, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell demise ligand 1 resistance in liver most cancers. Hepatology. 2019;70:198–214.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei Z, Zhang X, Yong T, Bie N, Zhan G, Li X, Liang Q, Li J, Yu J, Huang G, et al. Boosting anti-PD-1 remedy with metformin-loaded macrophage-derived microparticles. Nat Commun. 2021;12:440.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21:360–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu Z, Ott PA, Wu CJ. In the direction of customized, tumour-specific, therapeutic vaccines for most cancers. Nat Rev Immunol. 2018;18:168–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Morishita M, Takahashi Y, Matsumoto A, Nishikawa M, Takakura Y. Exosome-based tumor antigens-adjuvant co-delivery using genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials. 2016;111:55–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine mannequin of melanoma. Sci Rep. 2015;5:17622.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahlund CJE, Güclüler G, Hiltbrunner S, Veerman RE, Näslund TI, Gabrielsson S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci Rep. 2017;7:17095.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors utilizing a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.

    CAS 
    PubMed 

    Google Scholar
     

  • Abdulrahman Z, de Miranda N, van Esch EMG, de Vos van Steenwijk PJ, Nijman HW, Marij JPW, van Poelgeest MIE, van der Burg SH. Pre-existing inflammatory immune microenvironment predicts the scientific response of vulvar high-grade squamous intraepithelial lesions to therapeutic HPV16 vaccination. J Immunother Most cancers. 2020. https://doi.org/10.1136/jitc-2020-000563.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ott PA, Hu-Lieskovan S, Chmielowski B, Govindan R, Naing A, Bhardwaj N, Margolin Ok, Awad MM, Hellmann MD, Lin JJ, et al. A Part Ib trial of customized neoantigen remedy plus anti-PD-1 in sufferers with superior melanoma, non-small cell lung most cancers, or bladder most cancers. Cell. 2020;183:347-362.e324.

    CAS 
    PubMed 

    Google Scholar
     

  • Koerner J, Horvath D, Herrmann VL, MacKerracher A, Gander B, Yagita H, Rohayem J, Groettrup M. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for efficient anti-cancer immunotherapy. Nat Commun. 2021;12:2935.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phung CD, Pham TT, Nguyen HT, Nguyen TT, Ou W, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes concentrating on tumor-draining lymph nodes for efficient induction of antitumor T-cell responses. Acta Biomater. 2020;115:371–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Wu T, Zhang Ok, Meng X, Dai W, Wang D, Dong H, Zhang X. Engineered exosome-mediated near-infrared-II area V(2)C quantum dot supply for nucleus-target low-temperature photothermal remedy. ACS Nano. 2019;13:1499–510.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Yu W, Cao J, Gao H. Harnessing carbon monoxide-releasing platforms for most cancers remedy. Biomaterials. 2020;255:120193.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu D, Liu Z, Li Y, Huang Q, Xia L, Li Ok. Supply of manganese carbonyl to the tumor microenvironment utilizing tumor-derived exosomes for most cancers fuel remedy and low dose radiotherapy. Biomaterials. 2021;274:120894.

    CAS 
    PubMed 

    Google Scholar
     

  • Ding J, Lu G, Nie W, Huang LL, Zhang Y, Fan W, Wu G, Liu H, Xie HY. Self-activatable photo-extracellular vesicle for synergistic trimodal anticancer remedy. Adv Mater. 2021;33:e2005562.

    PubMed 

    Google Scholar
     

  • Wang J, Chen P, Dong Y, Xie H, Wang Y, Soto F, Ma P, Feng X, Du W, Liu BF. Designer exosomes enabling tumor focused environment friendly chemo/gene/photothermal remedy. Biomaterials. 2021;276:121056.

    CAS 
    PubMed 

    Google Scholar
     

  • Grangier A, Branchu J, Volatron J, Piffoux M, Gazeau F, Wilhelm C, Silva AKA. Technological advances in the direction of extracellular vesicles mass manufacturing. Adv Drug Deliv Rev. 2021;176:113843.

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell JP, Courtroom J, Mason MD, Tabi Z, Clayton A. Elevated exosome manufacturing from tumour cell cultures utilizing the Integra CELLine Tradition System. J Immunol Strategies. 2008;335:98–105.

    CAS 
    PubMed 

    Google Scholar
     

  • de Almeida FM, Bernardes N, Oliveira FD, Costa AC, Fernandes-Platzgummer A, Farinha JP, Rodrigues CAV, Jung S, Tseng RJ, Milligan W, et al. Scalable manufacturing of human mesenchymal stromal cell-derived extracellular vesicles below serum-/xeno-free circumstances in a microcarrier-based bioreactor tradition system. Entrance Cell Dev Biol. 2020;8:553444.


    Google Scholar
     

  • Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, Wollacott R, Sapp E, Dubuke ML, Li X, et al. Exosomes produced from 3D cultures of mscs by tangential movement filtration present larger yield and improved exercise. Mol Ther. 2018;26:2838–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piffoux M, Silva AKA, Lugagne JB, Hersen P, Wilhelm C, Gazeau F. Extracellular vesicle manufacturing loaded with nanoparticles and medicines in a trade-off between loading, yield and purity: in the direction of a personalised drug supply system. Adv Biosyst. 2017;1:e1700044.

    PubMed 

    Google Scholar
     

  • Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, Osanto S. Atomic power microscopy: a novel method to the detection of nanosized blood microparticles. J Thromb Haemost. 2010;8:315–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Nizamudeen Z, Markus R, Lodge R, Parmenter C, Platt M, Chakrabarti L, Sottile V. Speedy and correct evaluation of stem cell-derived extracellular vesicles with tremendous decision microscopy and dwell imaging. Biochim Biophys Acta Mol Cell Res. 2018;1865:1891–900.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corso G, Heusermann W, Trojer D, Görgens A, Steib E, Voshol J, Graff A, Genoud C, Lee Y, Hean J, et al. Systematic characterization of extracellular vesicle sorting domains and quantification on the single molecule—single vesicle degree by fluorescence correlation spectroscopy and single particle imaging. J Extracell Vesicles. 2019;8:1663043.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi D, Montermini L, Jeong H, Sharma S, Meehan B, Rak J. Mapping subpopulations of most cancers cell-derived extracellular vesicles and particles by nano-flow cytometry. ACS Nano. 2019;13:10499–511.

    CAS 
    PubMed 

    Google Scholar
     

  • Morales-Kastresana A, Telford B, Musich TA, McKinnon Ok, Clayborne C, Braig Z, Rosner A, Demberg T, Watson DC, Karpova TS, et al. Labeling extracellular vesicles for nanoscale movement cytometry. Sci Rep. 1878;2017:7.


    Google Scholar
     

  • Daaboul GG, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman DS, Ghidoni R, Ozkumur AY, Piotto C, et al. Digital detection of exosomes by interferometric imaging. Sci Rep. 2016;6:37246.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva AM, Lázaro-Ibáñez E, Gunnarsson A, Dhande A, Daaboul G, Peacock B, Osteikoetxea X, Salmond N, Friis KP, Shatnyeva O, Dekker N. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule decision. J Extracell Vesicles. 2021;10:e12130.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.