Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

  • Tkach M, Thery C. Communication by extracellular vesicles: the place we’re and the place we have to go. Cell. 2016;164:1226–32.

    CAS 
    Article 

    Google Scholar
     

  • Raposo G, Stahl PD. Extracellular vesicles: a brand new communication paradigm? Nat Rev Mol Cell Biol. 2019;20:509–10.

    CAS 
    Article 

    Google Scholar
     

  • Hu W, Liu C, Bi ZY, Zhou Q, Zhang H, Li LL, et al. Complete panorama of extracellular vesicle-derived RNAs in most cancers initiation, development, metastasis and most cancers immunology. Mol Most cancers. 2020;19:102.

    CAS 
    Article 

    Google Scholar
     

  • Wolf P. The character and significance of platelet merchandise in human plasma. Br J Haematol. 1967;13:269–88.

    CAS 
    Article 

    Google Scholar
     

  • Martinez MC, Andriantsitohaina R. Microparticles in angiogenesis: therapeutic potential. Circ Res. 2011;109:110–9.

    CAS 
    Article 

    Google Scholar
     

  • Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and medical implications. Blood Rev. 2007;21:157–71.

    CAS 
    Article 

    Google Scholar
     

  • Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication throughout most cancers development. J Cell Sci. 2010;123:1603–11.

    CAS 
    Article 

    Google Scholar
     

  • Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding? Biomolecules. 2018;8:94.

    Article 

    Google Scholar
     

  • McConnell RE, Tyska MJ. Myosin-1a powers the sliding of apical membrane alongside microvillar actin bundles. J Cell Biol. 2007;177:671–81.

    CAS 
    Article 

    Google Scholar
     

  • McConnell RE, Higginbotham JN, Shifrin DA Jr, Tabb DL, Coffey RJ, Tyska MJ. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol. 2009;185:1285–98.

    CAS 
    Article 

    Google Scholar
     

  • Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19:1875–85.

    CAS 
    Article 

    Google Scholar
     

  • Lai WF, Wong WT. Roles of the actin cytoskeleton in growing older and age-associated illnesses. Ageing Res Rev. 2020;58:101021.

    CAS 
    Article 

    Google Scholar
     

  • Seetharaman S, Etienne-Manneville S. Cytoskeletal crosstalk in cell migration. Developments Cell Biol. 2020;30:720–35.

    CAS 
    Article 

    Google Scholar
     

  • Barger SR, Gauthier NC, Krendel M. Squeezing in a meal: myosin features in phagocytosis. Developments Cell Biol. 2020;30:157–67.

    Article 

    Google Scholar
     

  • Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a particular signaling pathway that generates remodeling microvesicles in most cancers cells. Oncogene. 2012;31:4740–9.

    CAS 
    Article 

    Google Scholar
     

  • Sedgwick AE, Clancy JW, Olivia Balmert M, D’Souza-Schorey C. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep. 2015;5:14748.

    CAS 
    Article 

    Google Scholar
     

  • Choi W, Karim ZA, Whiteheart SW. Arf6 performs an early function in platelet activation by collagen and convulxin. Blood. 2006;107:3145–52.

    CAS 
    Article 

    Google Scholar
     

  • Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC, Li LT, et al. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle era and metastasis of tumor cells. Mol Med. 2012;18:1269–80.

    CAS 
    Article 

    Google Scholar
     

  • Adesanya MA, Maraveyas A, Madden LA. Most cancers microvesicles induce tissue factor-related procoagulant exercise in endothelial cells in vitro. Blood Coagul Fibrinolysis. 2017;28:365–72.

    CAS 
    Article 

    Google Scholar
     

  • Kholia S, Jorfi S, Thompson PR, Causey CP, Nicholas AP, Inal JM, et al. A novel function for peptidylarginine deiminases in microvesicle launch reveals therapeutic potential of PAD inhibition in sensitizing prostate most cancers cells to chemotherapy. J Extracell Vesicles. 2015;4:26192.

    Article 

    Google Scholar
     

  • Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. J Cell Biochem. 2009;106:127–38.

    CAS 
    Article 

    Google Scholar
     

  • Li D, Jia H, Zhang H, Lv M, Liu J, Zhang Y, et al. TLR4 signaling induces the discharge of microparticles by tumor cells that regulate inflammatory cytokine IL-6 of macrophages through microRNA let-7b. Oncoimmunology. 2012;1:687–93.

    Article 

    Google Scholar
     

  • Hu X, Weston TA, He C, Jung RS, Heizer PJ, Younger BD, et al. Launch of cholesterol-rich particles from the macrophage plasma membrane throughout motion of filopodia and lamellipodia. Elife. 2019;8:e50231.

    Article 

    Google Scholar
     

  • Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D, et al. Enhanced shedding of extracellular vesicles from amoeboid prostate most cancers cells: potential results on the tumor microenvironment. Most cancers Biol Ther. 2014;15:409–18.

    CAS 
    Article 

    Google Scholar
     

  • Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, et al. Acid sphingomyelinase exercise triggers microparticle launch from glial cells. Embo j. 2009;28:1043–54.

    CAS 
    Article 

    Google Scholar
     

  • Thomas LM, Salter RD. Activation of macrophages by P2X7-induced microvesicles from myeloid cells is mediated by phospholipids and is partially depending on TLR4. J Immunol. 2010;185:3740–9.

    CAS 
    Article 

    Google Scholar
     

  • Stokes L, Fuller SJ, Sluyter R, Skarratt KK, Gu BJ, Wiley JS. Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function impact and enhanced interleukin-1beta secretion. Faseb j. 2010;24:2916–27.

    CAS 
    Article 

    Google Scholar
     

  • Das Ok, Prasad R, Singh A, Bhattacharya A, Roy A, Mallik S, et al. Protease-activated receptor 2 promotes actomyosin dependent remodeling microvesicles era from human breast most cancers. Mol Carcinog. 2018;57:1707–22.

    CAS 
    Article 

    Google Scholar
     

  • Das Ok, Prasad R, Roy S, Mukherjee A, Sen P. The protease activated receptor2 promotes Rab5a mediated era of pro-metastatic microvesicles. Sci Rep. 2018;8:7357.

    Article 

    Google Scholar
     

  • Laberge A, Ayoub A, Arif S, Larochelle S, Garnier A, Moulin VJ. α-2-Macroglobulin induces the shedding of microvesicles from cutaneous wound myofibroblasts. J Cell Physiol. 2019;234:11369–79.

    CAS 
    Article 

    Google Scholar
     

  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets launch two kinds of membrane vesicles: microvesicles by floor shedding and exosomes derived from exocytosis of multivesicular our bodies and alpha-granules. Blood. 1999;94:3791–9.

    CAS 
    Article 

    Google Scholar
     

  • Rondon AMR, de Almeida VH, Gomes T, Verçoza BRF, Carvalho RS, König S, et al. Tissue issue mediates microvesicles shedding from MDA-MB-231 breast most cancers cells. Biochem Biophys Res Commun. 2018;502:137–44.

    CAS 
    Article 

    Google Scholar
     

  • Burnett LA, Mild MM, Mehrotra P, Nowak RA. Stimulation of GPR30 will increase launch of EMMPRIN-containing microvesicles in human uterine epithelial cells. J Clin Endocrinol Metab. 2012;97:4613–22.

    CAS 
    Article 

    Google Scholar
     

  • Marrone MC, Morabito A, Giustizieri M, Chiurchiù V, Leuti A, Mattioli M, et al. TRPV1 channels are vital mind irritation detectors and neuropathic ache biomarkers in mice. Nat Commun. 2017;8:15292.

    Article 

    Google Scholar
     

  • Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, et al. Hypoxia-inducible components and RAB22A mediate formation of microvesicles that stimulate breast most cancers invasion and metastasis. Proc Natl Acad Sci U S A. 2014;111:E3234–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SK, Yang SH, Kwon I, Lee OH, Heo JH. Function of tumour necrosis issue receptor-1 and nuclear factor-κB in manufacturing of TNF-α-induced pro-inflammatory microparticles in endothelial cells. Thromb Haemost. 2014;112:580–8.

    CAS 
    Article 

    Google Scholar
     

  • Peng LH, Zhang YH, Han LJ, Zhang CZ, Wu JH, Wang XR, et al. Cell membrane capsules for encapsulation of chemotherapeutic and most cancers cell focusing on in vivo. ACS Appl Mater Interfaces. 2015;7:18628–37.

    CAS 
    Article 

    Google Scholar
     

  • Liang Q, Bie N, Yong T, Tang Ok, Shi X, Wei Z, et al. The softness of tumour-cell-derived microparticles regulates their drug-delivery effectivity. Nat Biomed Eng. 2019;3:729–40.

    CAS 
    Article 

    Google Scholar
     

  • Zhao X, Liu J, Fan J, Chao H, Peng X. Latest progress in photosensitizers for overcoming the challenges of photodynamic remedy: from molecular design to software. Chem Soc Rev. 2021;50:34.


    Google Scholar
     

  • Gan Q, Wang T, Cochrane C, McCarron P. Modulation of floor cost, particle dimension and morphological properties of chitosan-TPP nanoparticles meant for gene supply. Colloids Surf B Biointerfaces. 2005;44:65–73.

    CAS 
    Article 

    Google Scholar
     

  • Ren J, He W, Zheng L, Duan H. From buildings to features: insights into exosomes as promising drug supply automobiles. Biomater Sci. 2016;4:910–21.

    CAS 
    Article 

    Google Scholar
     

  • Liu R, Klich I, Ratajczak J, Ratajczak MZ, Zuba-Surma EK. Erythrocyte-derived microvesicles could switch phosphatidylserine to the floor of nucleated cells and falsely “mark” them as apoptotic. Eur J Haematol. 2009;83:220–9.

    Article 

    Google Scholar
     

  • Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic our bodies. J Neurooncol. 2013;113:1–11.

    Article 

    Google Scholar
     

  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J Extracell Vesicles. 2018;7:1535750.

    Article 

    Google Scholar
     

  • Agrahari V, Agrahari V, Burnouf PA, Chew CH, Burnouf T. Extracellular microvesicles as new industrial therapeutic frontiers. Developments Biotechnol. 2019;37:707–29.

    CAS 
    Article 

    Google Scholar
     

  • Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuolar organelle (VVO): a definite endothelial cell construction that gives a transcellular pathway for macromolecular extravasation. J Leukoc Biol. 1996;59:100–15.

    CAS 
    Article 

    Google Scholar
     

  • Monsky WL, Fukumura D, Gohongi T, Ancukiewcz M, Weich HA, Torchilin VP, et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors utilizing vascular endothelial development issue. Most cancers Res. 1999;59:4129–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Thorne SH, Negrin RS, Contag CH. Synergistic antitumor results of immune cell-viral biotherapy. Science. 2006;311:1780–4.

    CAS 
    Article 

    Google Scholar
     

  • Kim KM, Abdelmohsen Ok, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 2017;8:e1413.

    Article 

    Google Scholar
     

  • Ela S, Mäger I, Breakefield XO, Wooden MJ. Extracellular vesicles: biology and rising therapeutic alternatives. Nat Rev Drug Discov. 2013;12:347–57.

    Article 

    Google Scholar
     

  • Harel M, Oren-Giladi P, Kaidar-Particular person O, Shaked Y, Geiger T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic technique for plasma biomarker quantification. Mol Cell Proteomics. 2015;14:1127–36.

    CAS 
    Article 

    Google Scholar
     

  • Akagi T, Kato Ok, Kobayashi M, Kosaka N, Ochiya T, Ichiki T. On-chip immunoelectrophoresis of extracellular vesicles launched from human breast most cancers cells. PLoS One. 2015;10:e0123603.

    Article 

    Google Scholar
     

  • Xia L, Zeng Z, Tang WH. The function of platelet microparticle related microRNAs in mobile crosstalk. Entrance Cardiovasc Med. 2018;5:29.

    Article 

    Google Scholar
     

  • Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Organic properties of extracellular vesicles and their physiological features. J Extracell Vesicles. 2015;4:27066.

    Article 

    Google Scholar
     

  • Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10:881–906.

    CAS 
    Article 

    Google Scholar
     

  • Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L, et al. Comparative evaluation of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3:25011.

    Article 

    Google Scholar
     

  • Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell tradition supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.

    Article 

    Google Scholar
     

  • Wan C, Solar Y, Tian Y, Lu L, Dai X, Meng J, et al. Irradiated tumor cell-derived microparticles mediate tumor eradication through cell killing and immune reprogramming. Sci Adv. 2020;6:eaay9789.

    CAS 
    Article 

    Google Scholar
     

  • Dong W, Zhang H, Yin X, Liu Y, Chen D, Liang X, et al. Oral supply of tumor microparticle vaccines prompts NOD2 signaling pathway in ileac epithelium rendering potent antitumor T cell immunity. Oncoimmunology. 2017;6:e1282589.

    Article 

    Google Scholar
     

  • Tang M, Jiang L, Lin Y, Wu X, Wang Ok, He Q, et al. Platelet microparticle-mediated switch of miR-939 to epithelial ovarian most cancers cells promotes epithelial to mesenchymal transition. Oncotarget. 2017;8:97464–75.

    Article 

    Google Scholar
     

  • Varon D, Hayon Y, Dashevsky O, Shai E. Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res. 2012;130(Suppl 1):S98–9.

    Article 

    Google Scholar
     

  • Ma J, Cai W, Zhang Y, Huang C, Zhang H, Liu J, et al. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin alpha(M)beta(2) to tumor cells. J Immunol. 2013;191:3453–61.

    CAS 
    Article 

    Google Scholar
     

  • Ethun CG, Bilen MA, Jani AB, Maithel SK, Ogan Ok, Grasp VA. Frailty and most cancers: implications for oncology surgical procedure, medical oncology, and radiation oncology. CA Most cancers J Clin. 2017;67:362–77.

    Article 

    Google Scholar
     

  • Wu SG, Yu CJ, Tsai MF, Liao WY, Yang CH, Jan IS, et al. Survival of lung adenocarcinoma sufferers with malignant pleural effusion. Eur Respir J. 2013;41:1409–18.

    Article 

    Google Scholar
     

  • Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Function of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Most cancers. 2019;18:10.

    Article 

    Google Scholar
     

  • Wysoczynski M, Ratajczak MZ. Lung most cancers secreted microvesicles: underappreciated modulators of microenvironment in increasing tumors. Int J Most cancers. 2009;125:1595–603.

    CAS 
    Article 

    Google Scholar
     

  • Timaner M, Kotsofruk R, Raviv Z, Magidey Ok, Shechter D, Kan T, et al. Microparticles from tumors uncovered to radiation promote immune evasion partially by PD-L1. Oncogene. 2020;39:187–203.

    CAS 
    Article 

    Google Scholar
     

  • Li C, Qiu S, Jin Ok, Zheng X, Zhou X, Jin D, et al. Tumor-derived microparticles promote the development of triple-negative breast most cancers through PD-L1-associated immune suppression. Most cancers Lett. 2021;523:43–56.

    CAS 
    Article 

    Google Scholar
     

  • Chen J, Solar W, Zhang H, Ma J, Xu P, Yu Y, et al. Macrophages reprogrammed by lung most cancers microparticles promote tumor growth through launch of IL-1β. Cell Mol Immunol. 2020;17:1233–44.

    Article 

    Google Scholar
     

  • Vasanthakumar T, Rubinstein JL. Construction and roles of V-type ATPases. Developments Biochem Sci. 2020;45:295–307.

    CAS 
    Article 

    Google Scholar
     

  • Zhang H, Tang Ok, Zhang Y, Ma R, Ma J, Li Y, et al. Cell-free tumor microparticle vaccines stimulate dendritic cells through cGAS/STING signaling. Most cancers Immunol Res. 2015;3:196–205.

    CAS 
    Article 

    Google Scholar
     

  • Ma J, Wei Ok, Zhang H, Tang Ok, Li F, Zhang T, et al. Mechanisms by which dendritic cells current tumor microparticle antigens to CD8(+) T cells. Most cancers Immunol Res. 2018;6:1057–68.

    CAS 
    Article 

    Google Scholar
     

  • Mantegazza AR, Savina A, Vermeulen M, Perez L, Geffner J, Hermine O, et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood. 2008;112:4712–22.

    CAS 
    Article 

    Google Scholar
     

  • Pu J, Schindler C, Jia R, Jarnik M, Backlund P, Bonifacino JS. BORC, a multisubunit complicated that regulates lysosome positioning. Dev Cell. 2015;33:176–88.

    CAS 
    Article 

    Google Scholar
     

  • Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy by calcineurin and TFEB. Nat Cell Biol. 2015;17:288–99.

    Article 

    Google Scholar
     

  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, et al. Tumour-released exosomes and their implications in most cancers immunity. Cell Dying Differ. 2008;15:80–8.

    CAS 
    Article 

    Google Scholar
     

  • Jin X, Ma J, Liang X, Tang Ok, Liu Y, Yin X, et al. Pre-instillation of tumor microparticles enhances intravesical chemotherapy of nonmuscle-invasive bladder most cancers by a lysosomal pathway. Biomaterials. 2017;113:93–104.

    CAS 
    Article 

    Google Scholar
     

  • Xu JL, Ma QL, Zhang Y, Fei ZY, Solar YF, Fan Q, et al. Yeast-derived nanoparticles rework the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor development. Nat Commun. 2022;13:110.

    CAS 
    Article 

    Google Scholar
     

  • Yu ZL, Zhang W, Zhao JY, Zhong WQ, Ren JG, Wu M, et al. Improvement of a dual-modally traceable nanoplatform for most cancers theranostics utilizing pure circulating cell-derived microparticles in oral most cancers sufferers. Adv Func Mater. 2017;27:1703482.

    Article 

    Google Scholar
     

  • Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW, et al. Dynamic biodistribution of extracellular vesicles in vivo utilizing a multimodal imaging reporter. ACS Nano. 2014;8:483–94.

    CAS 
    Article 

    Google Scholar
     

  • Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, et al. Extracellular vesicle in vivo biodistribution is decided by cell supply, route of administration and focusing on. J Extracell Vesicles. 2015;4:26316.

    Article 

    Google Scholar
     

  • Qi H, Liu C, Lengthy L, Ren Y, Zhang S, Chang X, et al. Blood exosomes endowed with magnetic and focusing on properties for most cancers remedy. ACS Nano. 2016;10:3323–33.

    CAS 
    Article 

    Google Scholar
     

  • Gao YN, Qin Y, Wan C, Solar YJ, Meng JS, Huang J, et al. Small extracellular vesicles: a novel avenue for most cancers administration. Entrance Oncol. 2021;11:638357.

    Article 

    Google Scholar
     

  • Tang Ok, Zhang Y, Zhang H, Xu P, Liu J, Ma J, et al. Supply of chemotherapeutic medicine in tumour cell-derived microparticles. Nat Commun. 2012;3:1282.

    Article 

    Google Scholar
     

  • Ma J, Zhang Y, Tang Ok, Zhang H, Yin X, Li Y, et al. Reversing drug resistance of soppy tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26:713–27.

    CAS 
    Article 

    Google Scholar
     

  • Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: organic roles and medical therapeutic purposes. J Hematol Oncol. 2019;12:76.

    Article 

    Google Scholar
     

  • Pathria P, Louis TL, Varner JA. Concentrating on tumor-associated macrophages in most cancers. Developments Immunol. 2019;40:310–27.

    CAS 
    Article 

    Google Scholar
     

  • Saadi I, Alkuraya FS, Gisselbrecht SS, Goessling W, Cavallesco R, Turbe-Doan A, et al. Deficiency of the cytoskeletal protein SPECC1L results in indirect facial clefting. Am J Hum Genet. 2011;89:44–55.

    CAS 
    Article 

    Google Scholar
     

  • Prager BC, Xie Q, Bao S, Wealthy JN. Most cancers stem cells: the architects of the tumor ecosystem. Cell Stem Cell. 2019;24:41–53.

    CAS 
    Article 

    Google Scholar
     

  • Phan TG, Croucher PI. The dormant most cancers cell life cycle. Nat Rev Most cancers. 2020;20:398–411.

    CAS 
    Article 

    Google Scholar
     

  • Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, et al. Autologous tumor cell-derived microparticle-based focused chemotherapy in lung most cancers sufferers with malignant pleural effusion. Sci Transl Med. 2019;11:eaat5690.

    CAS 
    Article 

    Google Scholar
     

  • Xu P, Tang Ok, Ma J, Zhang H, Wang D, Zhu L, et al. Chemotherapeutic tumor microparticles elicit a neutrophil response focusing on malignant pleural effusions. Most cancers Immunol Res. 2020;8:1193–205.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Zhang H, Zhou N, Xu P, Wang J, Gao Y, et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in sufferers with extrahepatic cholangiocarcinoma. Nat Biomed Eng. 2020;4:743–53.

    CAS 
    Article 

    Google Scholar
     

  • Koren E, Fuchs Y. Modes of regulated cell demise in most cancers. Most cancers Discov. 2021;11:245–65.

    CAS 
    Article 

    Google Scholar
     

  • Rosenbaum SR, Wilski NA, Aplin AE. Fueling the hearth: inflammatory types of cell demise and implications for most cancers immunotherapy. Most cancers Discov. 2021;11:266–81.

    CAS 
    Article 

    Google Scholar
     

  • Bermejo C, Busby JE, Spiess PE, Heller L, Pagliaro LC, Pettaway CA. Neoadjuvant chemotherapy adopted by aggressive surgical consolidation for metastatic penile squamous cell carcinoma. J Urol. 2007;177:1335–8.

    Article 

    Google Scholar
     

  • Atallah E, Cortes J, O’Brien S, Pierce S, Rios MB, Estey E, et al. Institution of baseline toxicity expectations with normal frontline chemotherapy in acute myelogenous leukemia. Blood. 2007;110:3547–51.

    CAS 
    Article 

    Google Scholar
     

  • Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, et al. Differential fates of biomolecules delivered to focus on cells through extracellular vesicles. Proc Natl Acad Sci U S A. 2015;112:E1433–42.

    CAS 
    Article 

    Google Scholar
     

  • Kanada M, Kim BD, Hardy JW, Ronald JA, Bachmann MH, Bernard MP, et al. Microvesicle-mediated supply of minicircle DNA leads to efficient gene-directed enzyme prodrug most cancers remedy. Mol Most cancers Ther. 2019;18:2331–42.

    CAS 
    Article 

    Google Scholar
     

  • Zhang XJ, Xu QB, Zi ZK, Liu ZY, Wan C, Crisman LR, et al. Programmable extracellular vesicles for macromolecule supply and genome modifications. Dev cell. 2020;55:784–801.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Y, Liu Y, Guo X, Hu Z, Shi H. Interfering human papillomavirus E6/E7 oncogenes in cervical most cancers cells inhibits the angiogenesis of vascular endothelial cells through rising miR-377 in cervical most cancers cell-derived microvesicles. Onco Targets Ther. 2020;13:4145–55.

    CAS 
    Article 

    Google Scholar
     

  • Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658–70.

    CAS 
    Article 

    Google Scholar
     

  • Cattaneo R, Miest T, Shashkova EV, Barry MA. Reprogrammed viruses as most cancers therapeutics: focused, armed and shielded. Nat Rev Microbiol. 2008;6:529–40.

    CAS 
    Article 

    Google Scholar
     

  • Ferguson MS, Lemoine NR, Wang Y. Systemic supply of oncolytic viruses: hopes and hurdles. Adv Virol. 2012;2012:805629.

    Article 

    Google Scholar
     

  • Ledford H. Most cancers-fighting viruses win approval. Nature. 2015;526:622–3.

    CAS 
    Article 

    Google Scholar
     

  • Cairns R. Overcoming physiologic obstacles to most cancers therapy by molecularly focusing on the tumor microenvironment. Mol Most cancers Res. 2006;4:61–70.

    CAS 
    Article 

    Google Scholar
     

  • Chauhan VS, Furr SR, Sterka DG Jr, Nelson DA, Moerdyk-Schauwecker M, Marriott I, et al. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses. Virology. 2010;400:187–96.

    CAS 
    Article 

    Google Scholar
     

  • Yamamoto M, Curiel DT. Present points and future instructions of oncolytic adenoviruses. Mol Ther. 2010;18:243–50.

    CAS 
    Article 

    Google Scholar
     

  • Wojton J, Kaur B. Affect of tumor microenvironment on oncolytic viral remedy. Cytokine Development Issue Rev. 2010;21:127–34.

    CAS 
    Article 

    Google Scholar
     

  • Harrington Ok, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in most cancers therapy. Nat Rev Drug Discov. 2019;18:689–706.

    CAS 
    Article 

    Google Scholar
     

  • Jain RK, Stylianopoulos T. Delivering nanomedicine to stable tumors. Nat Rev Clin Oncol. 2010;7:653–64.

    CAS 
    Article 

    Google Scholar
     

  • Pan PY, Chen HM, Chen SH. Myeloid-derived suppressor cells as a Computer virus: a mobile automobile for the supply of oncolytic viruses. Oncoimmunology. 2013;2:e25083.

    Article 

    Google Scholar
     

  • Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells successfully ship an oncolytic adenovirus to intracranial glioma. Stem Cells. 2008;26:831–41.

    CAS 
    Article 

    Google Scholar
     

  • Munguia A, Ota T, Miest T, Russell SJ. Cell carriers to ship oncolytic viruses to websites of myeloma tumor development. Gene Ther. 2008;15:797–806.

    CAS 
    Article 

    Google Scholar
     

  • Barnard AS. Nanohazards: data is our first defence. Nat Mater. 2006;5:245–8.

    CAS 
    Article 

    Google Scholar
     

  • Fitzpatrick Z, Gyorgy B, Skog J, Maguire CA. Extracellular vesicles as enhancers of virus vector-mediated gene supply. Hum Gene Ther. 2014;25:785–6.

    CAS 
    Article 

    Google Scholar
     

  • Gyorgy B, Fitzpatrick Z, Crommentuijn MH, Mu D, Maguire CA. Naturally enveloped AAV vectors for shielding neutralizing antibodies and sturdy gene supply in vivo. Biomaterials. 2014;35:7598–609.

    CAS 
    Article 

    Google Scholar
     

  • Cao Y, Liu C, Gu Z, Zhang Y, Duan Y, Zhang Y, et al. Microparticles mediate human papillomavirus sort 6 or 11 an infection of human macrophages. Cell Mol Immunol. 2017;14:395–7.

    CAS 
    Article 

    Google Scholar
     

  • Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T, et al. Supply of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials. 2016;89:56–66.

    CAS 
    Article 

    Google Scholar
     

  • Kruyt FA, Curiel DT. Towards a brand new era of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther. 2002;13:485–95.

    CAS 
    Article 

    Google Scholar
     

  • Eriksson M, Guse Ok, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, et al. Oncolytic adenoviruses kill breast most cancers initiating CD44+CD24-/low cells. Mol Ther. 2007;15:2088–93.

    CAS 
    Article 

    Google Scholar
     

  • Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Steel-organic framework-based stimuli-responsive methods for drug supply. Adv Sci (Weinh). 2019;6:1801526.

    Article 

    Google Scholar
     

  • Wu MX, Yang YW. Steel-organic framework (MOF)-based drug/cargo supply and most cancers remedy. Adv Mater. 2017;29:1606134.

    Article 

    Google Scholar
     

  • Osterrieth JWM, Fairen-Jimenez D. Steel-organic framework composites for theragnostics and drug supply purposes. Biotechnol J. 2021;16:e2000005.

    Article 

    Google Scholar
     

  • Luciani N, Wilhelm C, Gazeau F. The function of cell-released microvesicles within the intercellular switch of magnetic nanoparticles within the monocyte/macrophage system. Biomaterials. 2010;31:7061–9.

    CAS 
    Article 

    Google Scholar
     

  • Wilhelm C, Gazeau F. Common cell labelling with anionic magnetic nanoparticles. Biomaterials. 2008;29:3161–74.

    CAS 
    Article 

    Google Scholar
     

  • Vats N, Wilhelm C, Rautou PE, Poirier-Quinot M, Péchoux C, Devue C, et al. Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of those mediators of organic data. Nanomedicine (Lond). 2010;5:727–38.

    CAS 
    Article 

    Google Scholar
     

  • Al Faraj A, Gazeau F, Wilhelm C, Devue C, Guérin CL, Péchoux C, et al. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice. Radiology. 2012;263:169–78.

    Article 

    Google Scholar
     

  • Silva AK, Di Corato R, Pellegrino T, Chat S, Pugliese G, Luciani N, et al. Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale. 2013;5:11374–84.

    Article 

    Google Scholar
     

  • Solar Y, Zheng Z, Zhang H, Yu Y, Ma J, Tang Ok, et al. Chemotherapeutic tumor microparticles combining low-dose irradiation reprogram tumor-promoting macrophages by a tumor-repopulating cell-curtailing pathway. Oncoimmunology. 2017;6:e1309487.

    Article 

    Google Scholar
     

  • Zhou HM, Zhang JG, Zhang X, Li Q. Concentrating on most cancers stem cells for reversing remedy resistance: mechanism, signaling, and potential brokers. Sign Transduct Goal Ther. 2021;6:62.

    Article 

    Google Scholar
     

  • Januchowski R, Świerczewska M, Sterzyńska Ok, Wojtowicz Ok, Nowicki M, Zabel M. Elevated expression of a number of collagen genes is related to drug resistance in ovarian most cancers cell traces. J Most cancers. 2016;7:1295–310.

    CAS 
    Article 

    Google Scholar
     

  • Altieri DC. Survivin, most cancers networks and pathway-directed drug discovery. Nat Rev Most cancers. 2008;8:61–70.

    CAS 
    Article 

    Google Scholar
     

  • Wei D, Li C, Ye J, Xiang F, Xu Y, Liu J. Codelivery of survivin inhibitor and chemotherapeutics by tumor-derived microparticles to reverse multidrug resistance in osteosarcoma. Cell Biol Int. 2020;45:382–93.

    Article 

    Google Scholar
     

  • Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine inexperienced loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal remedy. Biomaterials. 2013;34:7706–14.

    CAS 
    Article 

    Google Scholar
     

  • Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, et al. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal remedy. ACS Nano. 2016;10:10245–57.

    CAS 
    Article 

    Google Scholar
     

  • Huang L, Xu C, Xu P, Qin Y, Chen M, Feng Q, et al. Clever photosensitive mesenchymal stem cells and cell-derived microvesicles for photothermal remedy of prostate most cancers. Nanotheranostics. 2019;3:41–53.

    Article 

    Google Scholar
     

  • Wang D, Yao Y, He J, Zhong X, Li B, Rao S, et al. Engineered cell-derived microparticles Bi2Se3/DOX@MPs for imaging guided synergistic photothermal/low-dose chemotherapy of most cancers. Adv Sci (Weinh). 2020;7:1901293.

    CAS 
    Article 

    Google Scholar
     

  • Suzuki-Inoue Ok. Platelets and cancer-associated thrombosis: specializing in the platelet activation receptor CLEC-2 and podoplanin. Blood. 2019;134:1912–8.

    Article 

    Google Scholar
     

  • Elmallah MIY, Cordonnier M, Vautrot V, Chanteloup G, Garrido C, Gobbo J. Membrane-anchored heat-shock protein 70 (Hsp70) in most cancers. Most cancers Lett. 2020;469:134–41.

    CAS 
    Article 

    Google Scholar
     

  • Ireson CR, Kelland LR. Discovery and growth of anticancer aptamers. Mol Most cancers Ther. 2006;5:2957–62.

    CAS 
    Article 

    Google Scholar
     

  • Chen G, Zhu JY, Zhang ZL, Zhang W, Ren JG, Wu M, et al. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA supply. Angew Chem Int Ed Engl. 2015;54:1036–40.

    CAS 
    Article 

    Google Scholar
     

  • Orozco AF, Lewis DE. Movement cytometric evaluation of circulating microparticles in plasma. Cytometry A. 2010;77:502–14.

    Article 

    Google Scholar
     

  • Li X, Lovell JF, Yoon J, Chen X. Scientific growth and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17:657–74.

    Article 

    Google Scholar
     

  • Silva AK, Kolosnjaj-Tabi J, Bonneau S, Marangon I, Boggetto N, Aubertin Ok, et al. Magnetic and photoresponsive theranosomes: translating cell-released vesicles into sensible nanovectors for most cancers remedy. ACS Nano. 2013;7:4954–66.

    CAS 
    Article 

    Google Scholar
     

  • Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Most cancers Cell. 2020;37:443–55.

    CAS 
    Article 

    Google Scholar
     

  • Solar YJ, Feng XR, Wan C, Lovell JF, Jin HL, Ding JX. Function of nanoparticle-mediated immunogenic cell demise in most cancers immunotherapy. Asian J Pharm Sci. 2021;16:129–32.

    Article 

    Google Scholar
     

  • Zhao H, Zhao B, Wu L, Xiao H, Ding Ok, Zheng C, et al. Amplified most cancers immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment. ACS Nano. 2019;13:12553–66.

    CAS 
    Article 

    Google Scholar
     

  • Yu GT, Rao L, Wu H, Yang LL, Bu LL, Deng WW, et al. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for most cancers theranostics by inducing macrophage polarization and synergizing immunogenic cell demise. Adv Func Mater. 2018;28:1801389.

    Article 

    Google Scholar
     

  • Li CX, Zhang Y, Dong X, Zhang L, Liu MD, Li B, et al. Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to comprehend therapeutics manufacturing and immune activation. Adv Mater. 2019;31:e1807211.

    Article 

    Google Scholar
     

  • Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour development by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–94.

    CAS 
    Article 

    Google Scholar
     

  • Vollmer J, Krieg AM. Immunotherapeutic purposes of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61:195–204.

    CAS 
    Article 

    Google Scholar
     

  • Zhang W, Yu ZL, Wu M, Ren JG, Xia HF, Sa GL, et al. Magnetic and folate functionalization permits speedy isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano. 2017;11:277–90.

    CAS 
    Article 

    Google Scholar
     

  • Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and regular tissues decided by a quantitative radioligand binding assay. Anal Biochem. 2005;338:284–93.

    CAS 
    Article 

    Google Scholar
     

  • Zhu L, Dong D, Yu ZL, Zhao YF, Pang DW, Zhang ZL. Folate-engineered microvesicles for enhanced goal and synergistic remedy towards breast most cancers. ACS Appl Mater Interfaces. 2017;9:5100–8.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Gao S, Ye WH, Yoon HS, Yang YY. Co-delivery of medication and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater. 2006;5:791–6.

    CAS 
    Article 

    Google Scholar
     

  • Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable stable lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthc Mater. 2013;2:576–84.

    CAS 
    Article 

    Google Scholar
     

  • Wei Z, Zhang X, Yong T, Bie N, Zhan G, Li X, et al. Boosting anti-PD-1 remedy with metformin-loaded macrophage-derived microparticles. Nat Commun. 2021;12:440.

    CAS 
    Article 

    Google Scholar
     

  • Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.

    CAS 
    Article 

    Google Scholar
     

  • Zhu S, Li S, Yi M, Li N, Wu Ok. Roles of microvesicles in tumor development and medical purposes. Int J Nanomed. 2021;16:7071–90.

    CAS 
    Article 

    Google Scholar
     

  • Tuo Z, He QY, Zhang ZJ, Wang YY, Solar JF, Wei Q, et al. Irradiation conditioning of adjuvanted, autologous most cancers cell membrane nanoparticle vaccines. Chem Eng J. 2022;433:134437.

    CAS 
    Article 

    Google Scholar
     

  • Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020;52:742–52.

    CAS 
    Article 

    Google Scholar
     

  • Ma R, Ji T, Chen D, Dong W, Zhang H, Yin X, et al. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor development. Oncoimmunology. 2016;5:e1118599.

    Article 

    Google Scholar
     

  • Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, et al. Completely different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast most cancers cells. J Biol Chem. 2012;287:7374–87.

    CAS 
    Article 

    Google Scholar
     

  • Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell operate by a mechanism involving TGF-β and miR23a switch. Oncoimmunology. 2016;5:e1062968.

    Article 

    Google Scholar
     

  • Köppler B, Cohen C, Schlöndorff D, Mack M. Differential mechanisms of microparticle switch toB cells and monocytes: anti-inflammatory propertiesof microparticles. Eur J Immunol. 2006;36:648–60.

    Article 

    Google Scholar
     

  • Baj-Krzyworzeka M, Szatanek R, Weglarczyk Ok, Baran J, Urbanowicz B, Brański P, et al. Tumour-derived microvesicles carry a number of floor determinants and mRNA of tumour cells and switch a few of these determinants to monocytes. Most cancers Immunol Immunother. 2006;55:808–18.

    CAS 
    Article 

    Google Scholar
     

  • Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with remodeling development factor-beta-mediated suppressive exercise on T lymphocytes. Most cancers Res. 2006;66:9290–8.

    CAS 
    Article 

    Google Scholar
     

  • Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 2002;195:1303–16.

    CAS 
    Article 

    Google Scholar
     

  • Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, increase and up-regulate organic actions of human regulatory T cells (Treg). PLoS One. 2010;5:e11469.

    Article 

    Google Scholar
     

  • Baj-Krzyworzeka M, Mytar B, Szatanek R, Surmiak M, Węglarczyk Ok, Baran J, et al. Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J Transl Med. 2016;14:36.

    Article 

    Google Scholar
     

  • Al-Nedawi Ok, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A. 2009;106:3794–9.

    Article 

    Google Scholar
     

  • Lenart M, Rutkowska-Zapala M, Baj-Krzyworzeka M, Szatanek R, Węglarczyk Ok, Smallie T, et al. Hyaluronan carried by tumor-derived microvesicles induces IL-10 manufacturing in classical (CD14(++)CD16(-)) monocytes through PI3K/Akt/mTOR-dependent signalling pathway. Immunobiology. 2017;222:1–10.

    CAS 
    Article 

    Google Scholar
     

  • Battisti F, Napoletano C, Rahimi Koshkaki H, Belleudi F, Zizzari IG, Ruscito I, et al. Tumor-derived microvesicles modulate antigen cross-processing through reactive oxygen species-mediated alkalinization of phagosomal compartment in dendritic cells. Entrance Immunol. 2017;8:1179.

    Article 

    Google Scholar
     

  • Pfeiler S, Thakur M, Grünauer P, Megens RTA, Joshi U, Coletti R, et al. CD36-triggered cell invasion and protracted tissue colonization by tumor microvesicles throughout metastasis. Faseb j. 2019;33:1860–72.

    CAS 
    Article 

    Google Scholar
     

  • Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, et al. Pancreatic cancer-secreted miR-155 implicates within the conversion from regular fibroblasts to cancer-associated fibroblasts. Most cancers Sci. 2015;106:1362–9.

    CAS 
    Article 

    Google Scholar
     

  • Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA. Tumor-derived microvesicles modulate the institution of metastatic melanoma in a phosphatidylserine-dependent method. Most cancers Lett. 2009;283:168–75.

    CAS 
    Article 

    Google Scholar
     

  • Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, et al. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the development of oral squamous cell carcinoma. Faseb J. 2019;33:5690–703.

    CAS 
    Article 

    Google Scholar
     

  • Bordeleau F, Chan B, Antonyak MA, Lampi MC, Cerione RA, Reinhart-King CA. Microvesicles launched from tumor cells disrupt epithelial cell morphology and contractility. J Biomech. 2016;49:1272–9.

    Article 

    Google Scholar
     

  • Castellana D, Zobairi F, Martinez MC, Panaro MA, Mitolo V, Freyssinet JM, et al. Membrane microvesicles as actors within the institution of a positive prostatic tumoral area of interest: a task for activated fibroblasts and CX3CL1-CX3CR1 axis. Most cancers Res. 2009;69:785–93.

    CAS 
    Article 

    Google Scholar
     

  • Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, et al. Membrane microparticles mediate switch of P-glycoprotein to drug delicate most cancers cells. Leukemia. 2009;23:1643–9.

    CAS 
    Article 

    Google Scholar
     

  • Lu JF, Luk F, Gong J, Jaiswal R, Grau GE, Bebawy M. Microparticles mediate MRP1 intercellular switch and the re-templating of intrinsic resistance pathways. Pharmacol Res. 2013;76:77–83.

    CAS 
    Article 

    Google Scholar
     

  • Jaiswal R, Luk F, Dalla PV, Grau GE, Bebawy M. Breast cancer-derived microparticles show tissue selectivity within the switch of resistance proteins to cells. PLoS One. 2013;8:e61515.

    CAS 
    Article 

    Google Scholar
     

  • Gong J, Luk F, Jaiswal R, Bebawy M. Microparticles mediate the intercellular regulation of microRNA-503 and proline-rich tyrosine kinase 2 to change the migration and invasion capability of breast most cancers cells. Entrance Oncol. 2014;4:220.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal R, Johnson MS, Pokharel D, Krishnan SR, Bebawy M. Microparticles shed from multidrug resistant breast most cancers cells present a parallel survival pathway by immune evasion. BMC Most cancers. 2017;17:104.

    Article 

    Google Scholar
     

  • Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al. Microvesicles launched from human renal most cancers stem cells stimulate angiogenesis and formation of lung premetastatic area of interest. Most cancers Res. 2011;71:5346–56.

    CAS 
    Article 

    Google Scholar
     

  • Lima LG, Leal AC, Vargas G, Porto-Carreiro I, Monteiro RQ. Intercellular switch of tissue issue through the uptake of tumor-derived microvesicles. Thromb Res. 2013;132:450–6.

    CAS 
    Article 

    Google Scholar
     

  • Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal switch of mRNA. Blood. 2007;110:2440–8.

    CAS 
    Article 

    Google Scholar
     

  • Jansen F, Yang X, Baumann Ok, Przybilla D, Schmitz T, Flender A, et al. Endothelial microparticles scale back ICAM-1 expression in a microRNA-222-dependent mechanism. J Cell Mol Med. 2015;19:2202–14.

    CAS 
    Article 

    Google Scholar
     

  • Curtis AM, Wilkinson PF, Gui M, Gales TL, Hu E, Edelberg JM. p38 mitogen-activated protein kinase targets the manufacturing of proinflammatory endothelial microparticles. J Thromb Haemost. 2009;7:701–9.

    CAS 
    Article 

    Google Scholar
     

  • Alexy T, Rooney Ok, Weber M, Grey WD, Searles CD. TNF-α alters the discharge and switch of microparticle-encapsulated miRNAs from endothelial cells. Physiol Genomics. 2014;46:833–40.

    CAS 
    Article 

    Google Scholar
     

  • Angelot F, Seillès E, Biichlé S, Berda Y, Gaugler B, Plumas J, et al. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory illnesses. Haematologica. 2009;94:1502–12.

    CAS 
    Article 

    Google Scholar
     

  • Sansone P, Berishaj M, Rajasekhar VK, Ceccarelli C, Chang Q, Strillacci A, et al. Evolution of most cancers stem-like cells in endocrine-resistant metastatic breast cancers is mediated by stromal microvesicles. Most cancers Res. 2017;77:1927–41.

    CAS 
    Article 

    Google Scholar
     

  • Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005;67:30–8.

    CAS 
    Article 

    Google Scholar
     

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung most cancers. Int J Most cancers. 2005;113:752–60.

    CAS 
    Article 

    Google Scholar
     

  • Michael JV, Wurtzel JGT, Mao GF, Rao AK, Kolpakov MA, Sabri A, et al. Platelet microparticles infiltrating stable tumors switch miRNAs that suppress tumor development. Blood. 2017;130:567–80.

    CAS 
    Article 

    Google Scholar
     

  • Tang Ok, Liu J, Yang Z, Zhang B, Zhang H, Huang C, et al. Microparticles mediate enzyme switch from platelets to mast cells: a brand new pathway for lipoxin A4 biosynthesis. Biochem Biophys Res Commun. 2010;400:432–6.

    CAS 
    Article 

    Google Scholar
     

  • Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. Excessive-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001;158:277–87.

    CAS 
    Article 

    Google Scholar
     

  • Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles come up from lipid rafts and fuse with activated platelets to provoke coagulation. Blood. 2005;106:1604–11.

    Article 

    Google Scholar
     

  • Wen B, Combes V, Bonhoure A, Weksler BB, Couraud PO, Grau GE. Endotoxin-induced monocytic microparticles have contrasting results on endothelial inflammatory responses. PLoS One. 2014;9:e91597.

    Article 

    Google Scholar
     

  • Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, et al. Microvesicle-mediated switch of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem. 2013;288:23586–96.

    CAS 
    Article 

    Google Scholar
     

  • Soni S, Wilson MR, O’Dea KP, Yoshida M, Katbeh U, Woods SJ, et al. Alveolar macrophage-derived microvesicles mediate acute lung damage. Thorax. 2016;71:1020–9.

    Article 

    Google Scholar
     

  • Zhang Y, Zhang R, Zhang H, Liu J, Yang Z, Xu P, et al. Microparticles launched by Listeria monocytogenes-infected macrophages are required for dendritic cell-elicited protecting immunity. Cell Mol Immunol. 2012;9:489–96.

    CAS 
    Article 

    Google Scholar
     

  • Distler JH, Huber LC, Hueber AJ, Reich CF third, Homosexual S, Distler O, et al. The discharge of microparticles by apoptotic cells and their results on macrophages. Apoptosis. 2005;10:731–41.

    CAS 
    Article 

    Google Scholar
     

  • Man QW, Zhang LZ, Zhao Y, Liu JY, Zheng YY, Zhao YF, et al. Lymphocyte-derived microparticles stimulate osteoclastogenesis by inducing RANKL in fibroblasts of odontogenic keratocysts. Oncol Rep. 2018;40:3335–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang C, Xiong W, Qiu Q, Shao Z, Hamel D, Tahiri H, et al. Function of receptor-mediated endocytosis within the antiangiogenic results of human T lymphoblastic cell-derived microparticles. Am J Physiol Regul Integr Comp Physiol. 2012;302:R941–9.

    CAS 
    Article 

    Google Scholar
     

  • Ma J, Cai W, Zhang Y, Huang C, Zhang H, Liu J, et al. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β2 to tumor cells. J Immunol. 2013;191:3453–61.

    CAS 
    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.