Nanoarchitectured prototypes of mesoporous silica nanoparticles for revolutionary biomedical functions | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Lohse SE, Murphy CJ. Functions of colloidal inorganic nanoparticles: from drugs to power. J Am Chem Soc. 2012;134:15607–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Huczko A. Template-based synthesis of nanomaterials. Appl Phys A. 2000;70:365–76.

    CAS 

    Google Scholar
     

  • Kuthati Y, Kankala RK, Lee C-H. Layered double hydroxide nanoparticles for biomedical functions: present standing and up to date prospects. Appl Clay Sci. 2015;112:100–16.


    Google Scholar
     

  • Farokhzad OC, Langer R. Nanomedicine: creating smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58:1456–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Riehemann Ok, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine–problem and views. Angew Chem Int Ed. 2009;48:872–97.

    CAS 

    Google Scholar
     

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI. Multifunctional inorganic nanoparticles for imaging, concentrating on, and drug supply. ACS Nano. 2008;2:889–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Chen H, Zhang S, Chen F, Zhang L, Zhang J, Zhu M, Wu H, Guo L, Feng J, Shi J. Multifunctional mesoporous nanoellipsoids for organic bimodal imaging and magnetically focused supply of anticancer medication. Adv Func Mater. 2011;21:270–8.

    CAS 

    Google Scholar
     

  • Ma Y, Huang J, Track S, Chen H, Zhang Z. Most cancers-targeted nanotheranostics: latest advances and views. Small. 2016;12:4936–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic functions of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25:3144–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Wan ACA, Ying JY. Nanomaterials for in situ cell supply and tissue regeneration. Adv Drug Deliv Rev. 2010;62:731–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Lou XW, Archer LA, Yang Z. Hole micro-/nanostructures: synthesis and functions. Adv Mater. 2008;20:3987–4019.

    CAS 

    Google Scholar
     

  • Kankala RK, Zhu Ok, Solar X-N, Liu C-G, Wang S-B, Chen A-Z. Cardiac tissue engineering on the nanoscale. ACS Biomater Sci Eng. 2018;4:800–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Niu Y, Li Y, Gong Y, Shi H, Huo Q, Liu Y, Xu Q. Stimuli-responsive supply automobiles primarily based on mesoporous silica nanoparticles: latest advances and challenges. J Mater Chem B. 2017;5:1339.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar B, Luo C, Yu H, Zhang X, Chen Q, Yang W, Wang M, Kan Q, Zhang H, Wang Y, et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for most cancers remedy. Nano Lett. 2018;18:3643–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Track IC, Moon WK, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug supply. Angew Chem Int Ed. 2008;47:8438–41.

    CAS 

    Google Scholar
     

  • Shao D, Li J, Zheng X, Pan Y, Wang Z, Zhang M, Chen Q-X, Dong W-F, Chen L. Janus “nano-bullets” for magnetic concentrating on liver most cancers chemotherapy. Biomaterials. 2016;100:118–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Paris JL, Cabanas MV, Manzano M, Vallet-Regi M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9:11023–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Ge S, Lan F, Liang L, Ren N, Li L, Liu H, Yan M, Yu J. Ultrasensitive photoelectrochemical biosensing of cell floor N-Glycan expression primarily based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain response. ACS Appl Mater Interfaces. 2017;9:6670–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng L, Cheng L, Dong Z, Tao D, Barnhart TE, Cai W, Chen M, Liu Z. Theranostic liposomes with hypoxia-activated prodrug to successfully destruct hypoxic tumors post-photodynamic remedy. ACS Nano. 2016;11:927–37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Chen Y, Li Z, Li L, Saint-Cricq P, Li C, Lin J, Wang C, Su Z, Zink JI. Tailor-made synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-photothermal remedy. Angew Chem Int Ed. 2016;55:2118–21.

    CAS 

    Google Scholar
     

  • Etale A, Tutu H, Drake DC. Mesoporous silica nanoparticles for the adsorptive elimination of Cu(II), Mn(II), and U(VI) from acid mine drainage. Mine Water Environ. 2015;34:231–40.

    CAS 

    Google Scholar
     

  • Lee C-H, Wong S-T, Lin T-S, Mou C-Y. Characterization and biomimetic examine of a hydroxo-bridged dinuclear phenanthroline cupric advanced encapsulated in mesoporous silica: fashions for catechol oxidase. J Phys Chem B. 2005;109:775–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42:3862–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki N, Zakaria MB, Chiang Y-D, Wu KCW, Yamauchi Y. Thermally steady polymer composites with improved transparency through the use of colloidal mesoporous silica nanoparticles as inorganic fillers. Phys Chem Chem Phys. 2012;14:7427–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Argyo C, Weiss V, Bräuchle C, Bein T. Multifunctional mesoporous silica nanoparticles as a common platform for drug supply. Chem Mater. 2014;26:435–51.

    CAS 

    Google Scholar
     

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY. Mesoporous silica nanoparticles as managed launch drug supply and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y-S, Tsai C-P, Huang H-Y, Kuo C-T, Hung Y, Huang D-M, Chen Y-C, Mou C-Y. Effectively-ordered mesoporous silica nanoparticles as cell markers. Chem Mater. 2005;17:4570–3.

    CAS 

    Google Scholar
     

  • Hartmann M. Ordered mesoporous supplies for bioadsorption and biocatalysis. Chem Mater. 2005;17:4577–93.

    CAS 

    Google Scholar
     

  • Rosenholm JM, Zhang J, Linden M, Sahlgren C. Mesoporous silica nanoparticles in tissue engineering—a perspective. Nanomedicine. 2016;11:391–402.

    CAS 
    PubMed 

    Google Scholar
     

  • Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VSY. Synthesis and functionalization of a mesoporous silica nanoparticle primarily based on the sol-gel course of and functions in managed launch. Acc Chem Res. 2007;40:846–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Mekaru H, Lu J, Tamanoi F. Growth of mesoporous silica-based nanoparticles with managed launch functionality for most cancers remedy. Adv Drug Deliv Rev. 2015;95:40–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han L, Gao C, Wu X, Chen Q, Shu P, Ding Z, Che S. Anionic surfactants templating route for synthesizing silica hole spheres with totally different shell porosity. Strong State Sci. 2011;13:721–8.

    CAS 

    Google Scholar
     

  • Wen J, Yang Ok, Liu F, Li H, Xu Y, Solar S. Numerous gatekeepers for mesoporous silica nanoparticle primarily based drug supply programs. Chem Soc Rev. 2017;46:6024–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Díez P, Sánchez A, Gamella M, Martínez-Ruíz P, Aznar E, de la Torre C, Murguía JR, Martínez-Máñez R, Villalonga R, Pingarrón JM. Towards the design of sensible supply programs managed by built-in enzyme-based biocomputing ensembles. J Am Chem Soc. 2014;136:9116–23.

    PubMed 

    Google Scholar
     

  • Zhu C-L, Lu C-H, Track X-Y, Yang H-H, Wang X-R. Bioresponsive managed launch utilizing mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc. 2011;133:1278–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Niu D, Liu Z, Li Y, Luo X, Zhang J, Gong J, Shi J. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore construction for magnetic functionalization and gene supply. Adv Mater. 2014;26:4947–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46:792–801.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim MH, Stein A. Comparative research of grafting and direct syntheses of inorganic−natural hybrid mesoporous supplies. Chem Mater. 1999;11:3285–95.

    CAS 

    Google Scholar
     

  • Yanes RE, Tamanoi F. Growth of mesoporous silica nanomaterials as a car for anticancer drug supply. Ther Deliv. 2012;3:389–404.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee C-H, Lin T-S, Mou C-Y. Mesoporous supplies for encapsulating enzymes. Nano Right now. 2009;4:165–79.

    CAS 

    Google Scholar
     

  • Du X, Kleitz F, Li X, Huang H, Zhang X, Qiao S-Z. Disulfide-bridged organosilica frameworks: designed, synthesis, redox-triggered biodegradation, and nanobiomedical functions. Adv Func Mater. 2018;28:1707325.


    Google Scholar
     

  • Kankala RK, Zhang H, Liu C-G, Kanubaddi KR, Lee C-H, Wang S-B, Cui W, Santos HA, Lin Ok, Chen A-Z. Metallic species-encapsulated mesoporous silica nanoparticles: present developments and newest breakthroughs. Adv Func Mater. 2019;29:1902652.

    CAS 

    Google Scholar
     

  • Kankala RK, Han Y-H, Na J, Lee C-H, Solar Z, Wang S-B, Kimura T, Okay YS, Yamauchi Y, Chen A-Z. Wu KC-W: nanoarchitectured construction and floor biofunctionality of mesoporous silica nanoparticles. Adv Mater. 2020;32:1907035.

    CAS 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: synthesis, organic impact and biomedical utility. Mater Sci Eng R Rep. 2019;137:66–105.


    Google Scholar
     

  • Croissant JG, Cattoen X, Wong MC, Durand JO, Khashab NM. Syntheses and functions of periodic mesoporous organosilica nanoparticles. Nanoscale. 2015;7:20318–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenholm JM, Sahlgren C, Lindén M. In the direction of multifunctional, focused drug supply programs utilizing mesoporous silica nanoparticles—alternatives & challenges. Nanoscale. 2010;2:1870–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic functions. Acc Chem Res. 2011;44:893–902.

    CAS 
    PubMed 

    Google Scholar
     

  • Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: bodily chemistry, biosafety, supply methods, and biomedical functions. Adv Healthc Mater. 2018;7:1700831.


    Google Scholar
     

  • Teng Z, Li W, Tang Y, Elzatahry A, Lu G, Zhao D. Mesoporous organosilica hole nanoparticles: synthesis and functions. Adv Mater. 2019;31:1707612.


    Google Scholar
     

  • Li Z, Shan X, Chen Z, Gao N, Zeng W, Zeng X, Mei L. Functions of floor modification applied sciences in nanomedicine for deep tumor penetration. Adv Sci. 2021;8:2002589.

    CAS 

    Google Scholar
     

  • Huang P, Lian D, Ma H, Gao N, Zhao L, Luan P, Zeng X. New advances in gated supplies of mesoporous silica for drug managed launch. Chin Chem Lett. 2021.

  • Kankala RK, Wang S-B, Chen A-Z. Nanoarchitecting hierarchical mesoporous siliceous frameworks: a brand new manner ahead. iScience. 2020;23:101687.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin F-C, Xie Y, Deng T, Zink JI. Magnetism, ultrasound, and light-stimulated mesoporous silica nanocarriers for theranostics and past. J Am Chem Soc. 2021;143:6025–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Abbasi M, Ghoran SH, Niakan MH, Jamali Ok, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: heralding a brighter future in most cancers nanomedicine. Microporous Mesoporous Mater. 2021;319:110967.

    CAS 

    Google Scholar
     

  • Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical functions. Chem Soc Rev. 2012;41:2590–605.

    CAS 
    PubMed 

    Google Scholar
     

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    CAS 

    Google Scholar
     

  • Han Y, Ying JY. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with varied mesoporous buildings. Angew Chem Int Ed. 2005;44:288–92.

    CAS 

    Google Scholar
     

  • Tao Z. Mesoporous silica-based nanodevices for organic functions. RSC Adv. 2014;4:18961–80.

    CAS 

    Google Scholar
     

  • Kohane DS, Langer R. Biocompatibility and drug supply programs. Chem Sci. 2010;1:441–6.

    CAS 

    Google Scholar
     

  • Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial meeting and functions of purposeful mesoporous supplies. Chem Rev. 2021;121:14349–429.

    CAS 
    PubMed 

    Google Scholar
     

  • Lang N, Tuel A. A quick and environment friendly ion-exchange process to take away surfactant molecules from MCM-41 supplies. Chem Mater. 2004;16:1961–6.

    CAS 

    Google Scholar
     

  • Niu D, Ma Z, Li Y, Shi J. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore dimension and controllable shell thickness. J Am Chem Soc. 2010;132:15144–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Tu J, Boyle AL, Friedrich H, Bomans PH, Bussmann J, Sommerdijk NA, Jiskoot W, Kros A. Mesoporous silica nanoparticles with giant pores for the encapsulation and launch of proteins. ACS Appl Mater Interfaces. 2016;8:32211–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle–PEI–Fusogenic peptide system for siRNA supply in most cancers remedy. Biomaterials. 2013;34:1391–401.

    CAS 
    PubMed 

    Google Scholar
     

  • Chang JH, Tsai PH, Chen W, Chiou SH, Mou CY. Twin supply of siRNA and plasmid DNA utilizing mesoporous silica nanoparticles to distinguish induced pluripotent stem cells into dopaminergic neurons. J Mater Chem B. 2017;5:3012–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda Ok. Preparation of colloidal mesoporous silica nanoparticles with totally different diameters and their distinctive degradation habits in static aqueous programs. Chem Mater. 2012;24:1462–71.

    CAS 

    Google Scholar
     

  • Huh S, Wiench JW, Trewyn BG, Track S, Pruski M, Lin VS. Tuning of particle morphology and pore properties in mesoporous silicas with a number of natural purposeful teams. Chem Commun. 2003. https://doi.org/10.1039/b306255d.

    Article 

    Google Scholar
     

  • Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija Ok, Xu S, Jeftinija S, Lin VSY. A mesoporous silica nanosphere-based service system with chemically detachable CdS nanoparticle caps for stimuli-responsive managed launch of neurotransmitters and drug molecules. J Am Chem Soc. 2003;125:4451–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular supply of membrane-impermeable proteins. J Am Chem Soc. 2007;129:8845–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou H, Cai W, Zhang L. Synthesis and construction of indium oxide nanoparticles dispersed inside pores of mesoporous silica. Mater Res Bull. 1999;34:845–9.

    CAS 

    Google Scholar
     

  • Zhao W, Gu J, Zhang L, Chen H, Shi J. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell construction. J Am Chem Soc. 2005;127:8916–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Grün M, Lauer I, Unger KK. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater. 1997;9:254–7.


    Google Scholar
     

  • Lee C-H, Lin T-S, Mou C-Y. (VO)2+ ions immobilized on functionalized floor of mesoporous silica and their exercise towards the hydroxylation of benzene. J Phys Chem B. 2003;107:2543–51.

    CAS 

    Google Scholar
     

  • Lee C-H, Cheng S-H, Huang IP, Souris JS, Yang C-S, Mou C-Y, Lo L-W. Intracellular pH-responsive mesoporous silica nanoparticles for the managed launch of anticancer chemotherapeutics. Angew Chem Int Ed. 2010;49:8214–9.

    CAS 

    Google Scholar
     

  • Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW. Close to-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Func Mater. 2009;19:215–22.

    CAS 

    Google Scholar
     

  • He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, Li Y, Shi J. A pH-responsive mesoporous silica nanoparticles-based multi-drug supply system for overcoming multi-drug resistance. Biomaterials. 2011;32:7711–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart CA, Finer Y, Hatton BD. Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci Rep. 2018;8:895.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales V, Gutiérrez-Salmerón M, Balabasquer M, Ortiz-Bustos J, Chocarro-Calvo A, García-Jiménez C, García-Muñoz RA. New drug-structure-directing agent idea: inherent pharmacological exercise mixed with templating strong and hollow-shell mesostructured silica nanoparticles. Adv Func Mater. 2016;26:7291–303.

    CAS 

    Google Scholar
     

  • Martinez-Erro S, Navas F, Romaní-Cubells E, Fernández-García P, Morales V, Sanz R, García-Muñoz RA. Kidney-protector lipidic cilastatin derivatives as structure-directing brokers for the synthesis of mesoporous silica nanoparticles for drug supply. Int J Mol Sci. 2021;22:7968.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales V, McConnell J, Pérez-Garnes M, Almendro N, Sanz R, García-Muñoz RA. l-Dopa launch from mesoporous silica nanoparticles engineered by the idea of drug-structure-directing brokers for Parkinson’s illness. J Mater Chem B. 2021;9:4178–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Morales V, Pérez-Garnes M, Balabasquer M, González-Casablanca J, García-Muñoz RA. Oil-in-water synthesis of hollow-shell mesoporous peapod-like silicates: electron microscopy insights. Microporous Mesoporous Mater. 2018;264:43–54.

    CAS 

    Google Scholar
     

  • Kankala RK, Liu C-G, Chen A-Z, Wang S-B, Xu P-Y, Mende LK, Liu C-L, Lee C-H, Hu Y-F. Overcoming multidrug resistance by the synergistic results of hierarchical pH-sensitive, ROS-generating nanoreactors. ACS Biomater Sci Eng. 2017;3:2431.

    CAS 
    PubMed 

    Google Scholar
     

  • Croissant J, Cattoën X, Man MWC, Gallud A, Raehm L, Trens P, Maynadier M, Durand J-O. Biodegradable ethylene-bis(Propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for environment friendly in-vitro drug supply. Adv Mater. 2014;26:6174–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Shen D, Yang J, Li X, Zhou L, Zhang R, Li W, Chen L, Wang R, Zhang F, Zhao D. Biphase stratification strategy to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014;14:923–32.

    CAS 
    PubMed 

    Google Scholar
     

  • He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, Chen Y. The impact of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and mobile responses. Biomaterials. 2010;31:1085–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Dinker MK, Kulkarni PS. Perception into the PEG-linked bis-imidazolium bridged framework of mesoporous organosilicas as ion exchangers. Microporous Mesoporous Mater. 2016;230:145–53.

    CAS 

    Google Scholar
     

  • Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials. 2008;29:4045–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Cao W, Solar Y, Wei X, Xu Ok, Zhang H, Tang B. AuNP flares-capped mesoporous silica nanoplatform for MTH1 detection and inhibition. Biomaterials. 2015;69:212–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Niedermayer S, Weiss V, Herrmann A, Schmidt A, Datz S, Muller Ok, Wagner E, Bein T, Brauchle C. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive focused drug supply. Nanoscale. 2015;7:7953–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao D, Li M, Wang Z, Zheng X, Lao Y-H, Chang Z, Zhang F, Lu M, Yue J, Hu H, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein supply. Adv Mater. 2018;30:1801198.


    Google Scholar
     

  • Wang L, Huo M, Chen Y, Shi J. Coordination-accelerated “Iron Extraction” permits quick biodegradation of mesoporous silica-based hole nanoparticles. Adv Healthc Mater. 2017;6:1700720.


    Google Scholar
     

  • Liu C-G, Han Y-H, Zhang J-T, Kankala RK, Wang S-B, Chen A-Z. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic remedy. Chem Eng J. 2019;370:1188–99.

    CAS 

    Google Scholar
     

  • Wang Y, Nor YA, Track H, Yang Y, Xu C, Yu M, Yu C. Small-sized and large-pore dendritic mesoporous silica nanoparticles improve antimicrobial enzyme supply. J Mater Chem B. 2016;4:2646–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao D, Lu MM, Zhao YW, Zhang F, Tan YF, Zheng X, Pan Y, Xiao XA, Wang Z, Dong WF, et al. The form impact of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomater. 2017;49:531–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Landau MV, Dafa E, Kaliya ML, Sen T, Herskowitz M. Mesoporous alumina catalytic materials ready by grafting wide-pore MCM-41 with an alumina multilayer. Microporous Mesoporous Mater. 2001;49:65–81.

    CAS 

    Google Scholar
     

  • Kankala RK, Kuthati Y, Liu C-L, Mou C-Y, Lee C-H. Killing most cancers cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular ranges of ROS. RSC Adv. 2015;5:86072–81.

    CAS 

    Google Scholar
     

  • Croissant JG, Zhang D, Alsaiari S, Lu J, Deng L, Tamanoi F, AlMalik AM, Zink JI, Khashab NM. Protein-gold clusters-capped mesoporous silica nanoparticles for prime drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J Management Launch. 2016;229:183–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Yildirim A, Demirel GB, Erdem R, Senturk B, Tekinay T, Bayindir M. Pluronic polymer capped biocompatible mesoporous silica nanocarriers. Chem Commun. 2013;49:9782–4.

    CAS 

    Google Scholar
     

  • Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol. 2012;25:2265–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Carmona M, Baeza A, Rodriguez-Milla MA, García-Castro J, Vallet-Regí M. Mesoporous silica nanoparticles grafted with a light-responsive protein shell for extremely cytotoxic antitumoral remedy. J Mater Chem B. 2015;3:5746–52.

    PubMed 

    Google Scholar
     

  • Yiu H, McBain S, El Haj A, Dobson J. A triple-layer design for polyethylenimine-coated, nanostructured magnetic particles and their use in DNA binding and transfection. Nanotechnology. 2007;18:435601.


    Google Scholar
     

  • Jhaveri A, Torchilin V. Intracellular supply of nanocarriers and concentrating on to subcellular organelles. Knowledgeable Opin Drug Deliv. 2016;13:49–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu C-G, Han Y-H, Kankala RK, Wang S-B, Chen A-Z. Subcellular efficiency of nanoparticles in most cancers remedy. Int J Nanomed. 2020;15:675–704.

    CAS 

    Google Scholar
     

  • Yu C, Qian L, Ge J, Fu J, Yuan P, Yao SCL, Yao SQ. Cell-Penetrating poly(disulfide) assisted intracellular supply of mesoporous silica nanoparticles for inhibition of miR-21 operate and detection of subsequent therapeutic results. Angew Chem Int Ed. 2016;55:9272–6.

    CAS 

    Google Scholar
     

  • Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, Reda MM, Lee R, Mihelic SA, Beckman BL, et al. Cationic polymer modified mesoporous silica nanoparticles for focused SiRNA supply to HER2+ breast most cancers. Adv Func Mater. 2015;25:2646–59.

    CAS 

    Google Scholar
     

  • Singh N, Karambelkar A, Gu L, Lin Ok, Miller JS, Chen CS, Sailor MJ, Bhatia SN. Bioresponsive mesoporous silica nanoparticles for triggered drug launch. J Am Chem Soc. 2011;133:19582–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SM, Jeon M, Kim KW, Park J, Lee IS. Postsynthetic functionalization of a hole silica nanoreactor with manganese oxide-immobilized metallic nanocrystals contained in the cavity. J Am Chem Soc. 2013;135:15714–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim CW, Pal U, Park S, Kim J, Kang YS. Synthesis of multifunctional metal- and metallic oxide Core@Mesoporous silica shell buildings through the use of a moist chemical strategy. Chemistry. 2012;18:12314–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Li F, Guo S, Chen X, Wang X, Li J, Gan Y. Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for launch of chemotherapeutics in multidrug resistant most cancers cells. Biomaterials. 2014;35:3650–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Kankala RK, Liu C-G, Yang D-Y, Wang S-B, Chen A-Z. Ultrasmall platinum nanoparticles allow deep tumor penetration and synergistic therapeutic talents by free radical species-assisted catalysis to fight most cancers multidrug resistance. Chem Eng J. 2020;383:123138.

    CAS 

    Google Scholar
     

  • Chen M, He X, Wang Ok, He D, Yang S, Qiu P, Chen S. A pH-responsive polymer/mesoporous silica nano-container linked by an acid cleavable linker for intracellular managed launch and tumor remedy in vivo. J Mater Chem B. 2014;2:428–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Palanikumar L, Choi ES, Cheon JY, Joo SH, Ryu J-H. Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a focused drug supply platform. Adv Func Mater. 2015;25:957–65.

    CAS 

    Google Scholar
     

  • Bhattacharyya S, Wang HS, Ducheyne P. Polymer-coated mesoporous silica nanoparticles for the managed launch of macromolecules. Acta Biomater. 2012;8:3429–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Park C, Oh Ok, Lee SC, Kim C. Managed launch of visitor molecules from mesoporous silica particles primarily based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed. 2007;46:1455–7.

    CAS 

    Google Scholar
     

  • Elbert J, Krohm F, Rüttiger C, Kienle S, Didzoleit H, Balzer BN, Hugel T, Stühn B, Gallei M, Brunsen A. Polymer-modified mesoporous silica skinny movies for redox-mediated selective membrane gating. Adv Func Mater. 2014;24:1591–601.

    CAS 

    Google Scholar
     

  • Xing L, Zheng H, Cao Y, Che S. Coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug launch. Adv Mater. 2012;24:6433–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan J, Wan D, Gong J. PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem Commun. 2011;47:3442–4.

    CAS 

    Google Scholar
     

  • Xie W, Deng WW, Zan MH, Rao L, Yu GT, Zhu DM, Wu WT, Chen B, Ji LW, Chen LB, et al. Most cancers cell membrane camouflaged nanoparticles to comprehend hunger remedy along with checkpoint blockades for enhancing most cancers remedy. ACS Nano. 2019;13:2849–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Xuan M, Shao J, Gao C, Wang W, Dai L, He Q. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew Chem Int Ed. 2018;57:12463–7.

    CAS 

    Google Scholar
     

  • Xuan M, Shao J, Zhao J, Li Q, Dai L, Li J. Magnetic mesoporous silica nanoparticles cloaked by crimson blood cell membranes: functions in most cancers remedy. Angew Chem Int Ed. 2018;57:6049–53.

    CAS 

    Google Scholar
     

  • Zhong C, Su S, Xu L, Liu Q, Zhang H, Yang P, Zhang M, Bai X, Wang J. Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater. Colloids Surf A. 2019;562:329–35.

    CAS 

    Google Scholar
     

  • Cheng H, Jiang X-Y, Zheng R-R, Zuo S-J, Zhao L-P, Fan G-L, Xie B-R, Yu X-Y, Li S-Y, Zhang X-Z. A biomimetic cascade nanoreactor for tumor focused hunger therapy-amplified chemotherapy. Biomaterials. 2019;195:75–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Zeno WF, Hilt S, Risbud SH, Voss JC, Longo ML. Spectroscopic characterization of structural adjustments in membrane scaffold proteins entrapped inside mesoporous silica gel monoliths. ACS Appl Mater Interfaces. 2015;7:8640–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Yu M, Noonan O, Zhang J, Track H, Zhang H, Lei C, Niu Y, Huang X, Yang Y, Yu C. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein supply. Small. 2015;11:5949–55.

    CAS 
    PubMed 

    Google Scholar
     

  • Li W-Q, Solar L-P, Xia Y, Hao S, Cheng G, Wang Z, Wan Y, Zhu C, He H, Zheng S-Y. Preoccupation of empty carriers decreases endo-/lysosome escape and reduces the protein supply effectivity of mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2018;10:5340–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Clemments AM, Botella P, Landry CC. Spatial mapping of protein adsorption on mesoporous silica nanoparticles by stochastic optical reconstruction microscopy. J Am Chem Soc. 2017;139:3978–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu S, Huang X, Du X. Glucose- and pH-responsive managed launch of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Angew Chem Int Ed. 2013;52:5580–4.

    CAS 

    Google Scholar
     

  • Yang Y, Jia Y, Gao L, Fei J, Dai L, Zhao J, Li J. Fabrication of autofluorescent protein coated mesoporous silica nanoparticles for organic utility. Chem Commun. 2011;47:12167–9.

    CAS 

    Google Scholar
     

  • Kuthati Y, Kankala RK, Busa P, Lin S-X, Deng J-P, Mou C-Y, Lee C-H. Phototherapeutic spectrum enlargement by synergistic impact of mesoporous silica trio-nanohybrids in opposition to antibiotic-resistant gram-negative bacterium. J Photochem Photobiol, B. 2017;169:124–33.

    CAS 

    Google Scholar
     

  • Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, Tsai C-P, Mou C-Y. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater. 2006;18:5170–2.

    CAS 

    Google Scholar
     

  • Leslie-Pelecky DL, Rieke RD. Magnetic properties of nanostructured supplies. Chem Mater. 1996;8:1770–83.

    CAS 

    Google Scholar
     

  • Gandhi S, Sethuraman S, Krishnan UM. Synthesis, characterization and biocompatibility analysis of iron oxide integrated magnetic mesoporous silica. Dalton Trans. 2012;41:12530–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Kowalczyk A, Borcuch A, Michalik M, Rutkowska M, Gil B, Sojka Z, Indyka P, Chmielarz L. MCM-41 modified with transition metals by template ion-exchange methodology as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous Mesoporous Mater. 2017;240:9–21.

    CAS 

    Google Scholar
     

  • Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP. Metallic nanoparticles and their assemblies. Chem Soc Rev. 2000;29:27–35.

    CAS 

    Google Scholar
     

  • Zhu Q-L, Xu Q. Metallic-organic framework composites. Chem Soc Rev. 2014;43:5468–512.

    CAS 
    PubMed 

    Google Scholar
     

  • Vivero-Escoto JL, Slowing II, Wu CW, Lin VS. Photoinduced intracellular managed launch drug supply in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc. 2009;131:3462–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Giri S, Trewyn BG, Stellmaker MP, Lin VSY. Stimuli-responsive controlled-release supply system primarily based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed. 2005;44:5038–44.

    CAS 

    Google Scholar
     

  • Xu C, Lin Y, Wang J, Wu L, Wei W, Ren J, Qu X. Nanoceria-triggered synergetic drug launch primarily based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic exercise and mobile results of CeO2. Adv Healthcare Mater. 2013;2:1591–9.

    CAS 

    Google Scholar
     

  • Yang L, Yin T, Liu Y, Solar J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive managed launch system for Alzheimer’s illness remedy. Acta Biomater. 2016;46:177–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Amoros P, Guillem C. pH- and photo-switched launch of visitor molecules from mesoporous silica helps. J Am Chem Soc. 2009;131:6833–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Liu C, Bai J, Wu C, Xiao Y, Li Y, Zheng J, Yang R, Tan W. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): low untimely launch and multifunctional most cancers theranostic platform. ACS Appl Mater Interfaces. 2015;7:6211–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J. Au capped magnetic core/mesoporous silica shell nanoparticles for mixed photothermo-/chemo-therapy and multimodal imaging. Biomaterials. 2012;33:989–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Gan Q, Lu X, Yuan Y, Qian J, Zhou H, Lu X, Shi J, Liu C. A magnetic, reversible pH-responsive nanogated ensemble primarily based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials. 2011;32:1932–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen P-J, Hu S-H, Hsiao C-S, Chen Y-Y, Liu D-M, Chen S-Y. Multifunctional magnetically detachable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular managed launch and MR imaging. J Mater Chem. 2011;21:2535–43.

    CAS 

    Google Scholar
     

  • Chen G, Xie Y, Peltier R, Lei H, Wang P, Chen J, Hu Y, Wang F, Yao X, Solar H. Peptide-decorated gold nanoparticles as purposeful nano-capping agent of mesoporous silica container for concentrating on drug supply. ACS Appl Mater Interfaces. 2016;8:11204–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Naahidi S, Jafari M, Edalat F, Raymond Ok, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug supply. J Management Launch. 2013;166:182–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Asefa T, MacLachlan MJ, Coombs N, Ozin GA. Periodic mesoporous organosilicas with natural teams contained in the channel partitions. Nature. 1999;402:867–71.

    CAS 

    Google Scholar
     

  • Hu J, Chen M, Fang X, Wu L. Fabrication and utility of inorganic hole spheres. Chem Soc Rev. 2011;40:5472–91.

    CAS 
    PubMed 

    Google Scholar
     

  • El-Safty SA, Hanaoka T. microemulsion liquid crystal templates for extremely ordered three-dimensional mesoporous silica monoliths with controllable mesopore buildings. Chem Mater. 2004;16:384–400.

    CAS 

    Google Scholar
     

  • Huo Q, Margolese DI, Stucky GD. Surfactant management of phases within the synthesis of mesoporous silica-based supplies. Chem Mater. 1996;8:1147–60.

    CAS 

    Google Scholar
     

  • Corma A, Kan Q, Navarro MT, Pérez-Pariente J, Rey F. Synthesis of MCM-41 with totally different pore diameters with out addition of auxiliary organics. Chem Mater. 1997;9:2123–6.

    CAS 

    Google Scholar
     

  • Corma A. From microporous to mesoporous molecular sieve supplies and their use in catalysis. Chem Rev. 1997;97:2373–420.

    CAS 
    PubMed 

    Google Scholar
     

  • Souris JS, Chen NT, Cheng SH, Chen CT, Lo LW. Silica nanoparticle platform. Cambridge: Educational Press; 2014.


    Google Scholar
     

  • Zhang F, Yan Y, Meng Y, Xia Y, Tu B, Zhao D. Ordered bimodal mesoporous silica with tunable pore construction and morphology. Microporous Mesoporous Mater. 2007;98:6–15.

    CAS 

    Google Scholar
     

  • Deng Y, Yu T, Wan Y, Shi Y, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X, Zhao D. Ordered mesoporous silicas and carbons with giant accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J Am Chem Soc. 2007;129:1690–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Torad NL, Lian H-Y, Wu KCW, Zakaria MB, Suzuki N, Ishihara S, Ji Q, Matsuura M, Maekawa Ok, Ariga Ok, et al. Novel block copolymer templates for tuning mesopore connectivity in cage-type mesoporous silica movies. J Mater Chem. 2012;22:20008–16.

    CAS 

    Google Scholar
     

  • Yu C, Yu Y, Miao L, Zhao D. Extremely ordered mesoporous silica buildings templated by poly(butylene oxide) phase di- and tri-block copolymers. Microporous Mesoporous Mater. 2001;44–45:65–72.


    Google Scholar
     

  • Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y. Managed intracellular launch of doxorubicin in multidrug-resistant most cancers cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano. 2011;5:9788–98.

    CAS 
    PubMed 

    Google Scholar
     

  • McGrath KM, Dabbs DM, Yao N, Aksay IA, Gruner SM. Formation of a silicate L3 part with constantly adjustable pore sizes. Science. 1997;277:552–6.

    CAS 

    Google Scholar
     

  • Sayari A, Kruk M, Jaroniec M, Moudrakovski IL. New approaches to pore dimension engineering of mesoporous silicates. Adv Mater. 1998;10:1376–9.

    CAS 

    Google Scholar
     

  • Sayari A. Unprecedented enlargement of the pore dimension and quantity of periodic mesoporous silica. Angew Chem Int Ed. 2000;39:2920–2.

    CAS 

    Google Scholar
     

  • Sen Karaman D, Gulin-Sarfraz T, Zhang JX, Rosenholm JM. One-pot synthesis of pore-expanded hole mesoporous silica particles. Mater Lett. 2015;143:140–3.

    CAS 

    Google Scholar
     

  • Zhu Y, Shi J, Chen H, Shen W, Dong X. A facile methodology to synthesize novel hole mesoporous silica spheres and superior storage property. Microporous Mesoporous Mater. 2005;84:218–22.

    CAS 

    Google Scholar
     

  • Yeh Y-Q, Chen B-C, Lin H-P, Tang C-Y. Synthesis of hole silica spheres with mesostructured shell utilizing cationic−anionic-neutral block copolymer ternary surfactants. Langmuir. 2006;22:6–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Hartono SB, Jin YG, Li Z, Lu GQ, Qiao SZ. A facile vesicle template path to multi-shelled mesoporous silica hole nanospheres. J Mater Chem. 2010;20:4595–601.

    CAS 

    Google Scholar
     

  • Liu J, Yang Q, Zhang L, Yang H, Gao J, Li C. Natural−Inorganic hybrid hole nanospheres with microwindows on the shell. Chem Mater. 2008;20:4268–75.

    CAS 

    Google Scholar
     

  • Schmidt-Winkel P, Glinka CJ, Stucky GD. Microemulsion templates for mesoporous silica. Langmuir. 2000;16:356–61.

    CAS 

    Google Scholar
     

  • Yi DK, Lee SS, Papaefthymiou GC, Ying JY. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater. 2006;18:614–9.

    CAS 

    Google Scholar
     

  • Liu D, Sasidharan M, Nakashima Ok. Micelles of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their utility to the synthesis of hole silica nanospheres. J Colloid Interface Sci. 2011;358:354–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J. Nuclear-targeted drug supply of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Kao Ok-C, Tsou C-J, Mou C-Y. Collapsed (kippah) hole silica nanoparticles. Chem Commun. 2012;48:3454–6.

    CAS 

    Google Scholar
     

  • Hao N, Wang H, Webley PA, Zhao D. Synthesis of uniform periodic mesoporous organosilica hole spheres with large-pore dimension and environment friendly encapsulation capability for toluene and the big biomolecule bovine serum albumin. Microporous Mesoporous Mater. 2010;132:543–51.

    CAS 

    Google Scholar
     

  • Gorelikov I, Matsuura N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 2008;8:369–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin KJ, Chen LJ, Prasad MR, Cheng CY. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@MCM-41. Adv Mater. 2004;16:1845–9.

    CAS 

    Google Scholar
     

  • Joo SH, Park JY, Tsung C-Ok, Yamada Y, Yang P, Somorjai GA. Thermally steady Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater. 2009;8:126–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Zhang W, Yang F, Zhou B, Zeng D, Zhang N, Zhao G, Hao S, Zhang X. Ru nanoparticles dispersed on magnetic yolk–shell nanoarchitectures with Fe3O4 core and sulfoacid-containing periodic mesoporous organosilica shell as bifunctional catalysts for direct conversion of cellulose to isosorbide. Nanoscale. 2018;10:2199–206.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang G, Gong H, Liu T, Solar X, Cheng L, Liu Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug supply and imaging-guided remedy of most cancers. Biomaterials. 2015;60:62–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Qiao SZ, Jin YG, Chen ZG, Gu HC, Lu GQ. Magnetic hole spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and construction management. Adv Mater. 2008;20:805–9.


    Google Scholar
     

  • Chen Z, Cui Z-M, Niu F, Jiang L, Track W-G. Pd nanoparticles in silica hole spheres with mesoporous partitions: a nanoreactor with extraordinarily excessive exercise. Chem Commun. 2010;46:6524–6.

    CAS 

    Google Scholar
     

  • Feng Z, Li Y, Niu D, Li L, Zhao W, Chen H, Li L, Gao J, Ruan M, Shi J. A facile path to hole nanospheres of mesoporous silica with tunable dimension. Chem Commun. 2008. https://doi.org/10.1039/b804594a.

    Article 

    Google Scholar
     

  • Zhou R, Solar S, Li C, Wu L, Hou X, Wu P. Enriching Mn-Doped ZnSe Quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl Mater Interfaces. 2018;10:34060–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu X-J, Xu D. Formation of Yolk/SiO2 shell buildings utilizing surfactant mixtures as template. J Am Chem Soc. 2009;131:2774–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Li L, Han D, Gu F. CO oxidation on Au@CeO2 yolk–shell nanoparticles with excessive catalytic stability. Mater Lett. 2014;137:188–91.

    CAS 

    Google Scholar
     

  • Egodawatte S, Datt A, Burns EA, Larsen SC. Chemical perception into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites. Langmuir. 2015;31:7553–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Tao Ok, Xiong C, Zhou S. Managed synthesis of Pd-NiO@SiO2 mesoporous core-shell nanoparticles and their enhanced catalytic efficiency for p-chloronitrobenzene hydrogenation with H2. Catal Sci Technol. 2015;5:405–14.

    CAS 

    Google Scholar
     

  • Liu S, Chen H, Lu X, Deng C, Zhang X, Yang P. Facile synthesis of copper(II)immobilized on magnetic mesoporous silica microspheres for selective enrichment of peptides for mass spectrometry evaluation. Angew Chem Int Ed. 2010;49:7557–61.

    CAS 

    Google Scholar
     

  • Lin Y-S, Wu S-H, Tseng C-T, Hung Y, Chang C, Mou C-Y. Synthesis of hole silica nanospheres with a microemulsion because the template. Chem Commun. 2009. https://doi.org/10.1039/b902681a.

    Article 

    Google Scholar
     

  • Fang X, Chen C, Liu Z, Liu P, Zheng N. A cationic surfactant assisted selective etching technique to hole mesoporous silica spheres. Nanoscale. 2011;3:1632–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as revolutionary platforms for bioimaging and therapeutic agent supply. Biomaterials. 2016;91:90–127.

    CAS 
    PubMed 

    Google Scholar
     

  • Djojoputro H, Zhou XF, Qiao SZ, Wang LZ, Yu CZ, Lu GQ. Periodic mesoporous organosilica hole spheres with tunable wall thickness. J Am Chem Soc. 2006;128:6320–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Matos JR, Kruk M, Mercuri LP, Jaroniec M, Asefa T, Coombs N, Ozin GA, Kamiyama T, Terasaki O. Periodic mesoporous organosilica with giant cagelike pores. Chem Mater. 2002;14:1903–5.

    CAS 

    Google Scholar
     

  • Dang M, Li W, Zheng YY, Su XD, Ma XB, Zhang YL, Ni QQ, Tao J, Zhang JJ, Lu GM, et al. Mesoporous organosilica nanoparticles with giant radial pores by way of an assembly-reconstruction course of in bi-phase. J Mater Chem B. 2017;5:2625–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous supplies with a uniform distribution of natural teams and inorganic oxide of their frameworks. J Am Chem Soc. 1999;121:9611–4.

    CAS 

    Google Scholar
     

  • Park SS, Park DH, Ha C-S. Free-standing periodic mesoporous organosilica movie with a crystal-like wall construction. Chem Mater. 2007;19:2709–11.

    CAS 

    Google Scholar
     

  • Mizoshita N, Inagaki S. Periodic mesoporous organosilica with molecular-scale ordering self-assembled by hydrogen bonds. Angew Chem Int Ed. 2015;54:11999–2003.

    CAS 

    Google Scholar
     

  • Urata C, Yamada H, Wakabayashi R, Aoyama Y, Hirosawa S, Arai S, Takeoka S, Yamauchi Y, Kuroda Ok. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J Am Chem Soc. 2011;133:8102–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Grosch L, Lee YJ, Hoffmann F, Froba M. Mild-harvesting three-chromophore programs primarily based on biphenyl-bridged periodic mesoporous organosilica. Chemistry. 2015;21:331–46.

    PubMed 

    Google Scholar
     

  • Sayari A, Wang W. Molecularly ordered nanoporous organosilicates ready with and with out surfactants. J Am Chem Soc. 2005;127:12194–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Cho E-B, Kim D, Gorka J, Jaroniec M. Three-dimensional cubic (Im3m) periodic mesoporous organosilicas with benzene- and thiophene-bridging teams. J Mater Chem. 2009;19:2076–81.

    CAS 

    Google Scholar
     

  • Maegawa Y, Inagaki S. Iridium-bipyridine periodic mesoporous organosilica catalyzed direct C-H borylation utilizing a pinacolborane. Dalton Trans. 2015;44:13007–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Waki M, Fujita S, Inagaki S. Ionic conductivity of mesoporous electrolytes with a excessive density of pyridinium teams inside their framework. J Mater Chem A. 2014;2:9960–3.

    CAS 

    Google Scholar
     

  • Croissant J, Salles D, Maynadier M, Mongin O, Hugues V, Blanchard-Desce M, Cattoën X, Wong Chi Man M, Gallud A, Garcia M, et al. Combined periodic mesoporous organosilica nanoparticles and core-shell programs, utility to in vitro two-photon imaging, remedy, and drug supply. Chem Mater. 2014;26:7214–20.

    CAS 

    Google Scholar
     

  • Liu J, Yang HQ, Kleitz F, Chen ZG, Yang T, Strounina E, Lu GQ, Qiao SZ. Yolk-shell hybrid supplies with a periodic mesoporous organosilica shell: splendid nanoreactors for selective alcohol oxidation. Adv Func Mater. 2012;22:591–9.

    CAS 

    Google Scholar
     

  • Yang Y, Wan J, Niu Y, Gu Z, Zhang J, Yu M, Yu C. Construction-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for protected protein supply. Chem Mater. 2016;28:9008–16.

    CAS 

    Google Scholar
     

  • Zhou M, Du X, Li W, Li X, Huang H, Liao Q, Shi B, Zhang X, Zhang M. One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug supply. J Mater Chem B. 2017;5:4455–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Aspromonte SG, Sastre Á, Boix AV, Cocero MJ, Alonso E. Cobalt oxide nanoparticles on mesoporous MCM-41 and Al-MCM-41 by supercritical CO2 deposition. Microporous Mesoporous Mater. 2012;148:53–61.

    CAS 

    Google Scholar
     

  • Parvulescu V, Su BL. Iron, cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons. Catal Right now. 2001;69:315–22.

    CAS 

    Google Scholar
     

  • Teng Z, Wang C, Tang Y, Li W, Bao L, Zhang X, Su X, Zhang F, Zhang J, Wang S, et al. Deformable hole periodic mesoporous organosilica nanocapsules for considerably improved mobile uptake. J Am Chem Soc. 2018;140:1385–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D. Anisotropic growth-induced synthesis of dual-compartment janus mesoporous silica nanoparticles for bimodal triggered medication supply. J Am Chem Soc. 2014;136:15086–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Xuan M, Wu Z, Shao J, Dai L, Si T, He Q. Close to infrared light-powered janus mesoporous silica nanoparticle motors. J Am Chem Soc. 2016;138:6492–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng YJ, Zhang YD, Deng WJ, Hu J. Antibacterial and anticancer actions of uneven lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids Surf B: Biointerfaces. 2020;186:110744.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenholm JM, Mamaeva V, Sahlgren C, Linden M. Nanoparticles in focused most cancers remedy: mesoporous silica nanoparticles coming into preclinical growth stage. Nanomedicine. 2012;7:111–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Niu Y, Yu M, Meka A, Liu Y, Zhang J, Yang Y, Yu C. Understanding the contribution of floor roughness and hydrophobic modification of silica nanoparticles to enhanced therapeutic protein supply. J Mater Chem B. 2015;4:212–9.

    PubMed 

    Google Scholar
     

  • Li XM, Zhao TC, Lu Y, Wang PY, El-Toni AM, Zhang F, Zhao DY. Degradation-restructuring induced anisotropic epitaxial progress for fabrication of uneven diblock and triblock mesoporous nanocomposites. Adv Mater. 2017. https://doi.org/10.1002/adma.201701652.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XM, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao DY. Anisotropic encapsulation-induced synthesis of uneven single-hole mesoporous nanocages. J Am Chem Soc. 2015;137:5903–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Boujakhrout A, Sánchez E, Díez P, Sánchez A, Martínez-Ruiz P, Parrado C, Pingarrón JM, Villalonga R. Single-walled carbon nanotubes/Au–mesoporous silica janus nanoparticles as constructing blocks for the preparation of a bienzyme biosensor. ChemElectroChem. 2015;2:1735–41.

    CAS 

    Google Scholar
     

  • Wang YS, Shao D, Zhang L, Zhang XL, Li J, Feng J, Xia H, Huo QS, Dong WF, Solar HB. Gold nanorods-silica Janus nanoparticles for theranostics. Appl Phys Lett. 2015;106:173705.


    Google Scholar
     

  • Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Good nanostructures for cargo supply: uncaging and activating by gentle. J Am Chem Soc. 2017;139:4584–610.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vega MS, Martinez AG, Cucinotta F. Facile technique for the synthesis of Gold@Silica hybrid nanoparticles with managed porosity and janus morphology. Nanomaterials. 2019;9:348.

    CAS 

    Google Scholar
     

  • Wang X, He YP, Liu C, Liu YL, Qiao ZA, Huo QS. A controllable asymmetrical/symmetrical coating technique for architectural mesoporous organosilica nanostructures. Nanoscale. 2016;8:13581–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Sanchez S. Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme. Tetrahedron. 2017;73:4883–6.

    CAS 

    Google Scholar
     

  • Ma X, Hahn Ok, Sanchez S. Catalytic mesoporous Janus nanomotors for lively cargo supply. J Am Chem Soc. 2015;137:4976–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villalonga R, Diez P, Sanchez A, Aznar E, Martinez-Manez R, Pingarron JM. Enzyme-controlled sensing-actuating nanomachine primarily based on Janus Au-mesoporous silica nanoparticles. Chemistry. 2013;19:7889–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao D, Zhang X, Liu W, Zhang F, Zheng X, Qiao P, Li J, Dong WF, Chen L. Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug supply in most cancers remedy. ACS Appl Mater Interfaces. 2016;8:4303–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Xia Y. Form-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J-T, Kankala RK, Zhou Y-H, Dong J-C, Chen A-Z, Wang Q. Twin purposeful modification of alkaline amino acids induces the self-assembly of cylinder-like tobacco mosaic virus coat proteins into gear-like architectures. Small. 2019;15:1805543.


    Google Scholar
     

  • Suteewong T, Sai H, Hovden R, Muller D, Bradbury MS, Gruner SM, Wiesner U. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial progress mechanism. Science. 2013;340:337–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croissant J, Cattoën X, Wong Chi Man M, Dieudonné P, Charnay C, Raehm L, Durand J-O. One-pot building of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal-like architectures. Adv Mater. 2015;27:145–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Track H, Yu MH, Xu C, Liu Y, Tang J, Yang YN, Yu CZ. Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA supply efficiency. J Mater Chem B. 2018;6:4089–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Deng C, Liu Y, Zhou F, Wu M, Zhang Q, Yi D, Yuan W, Wang Y. Engineering of dendritic mesoporous silica nanoparticles for environment friendly supply of water-insoluble paclitaxel in most cancers remedy. J Colloid Interface Sci. 2021;593:424–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee JY, Kim MK, Nguyen TL, Kim J. Hole mesoporous silica nanoparticles with extra-large mesopores for enhanced most cancers vaccine. ACS Appl Mater Interfaces. 2020;12:34658–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Cha BG, Jeong JH, Kim J. Further-large pore mesoporous silica nanoparticles enabling co-delivery of excessive quantities of protein antigen and toll-like receptor 9 agonist for enhanced most cancers vaccine efficacy. ACS Cent Sci. 2018;4:484–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Lan Ok, Xu B, Xu L, Duan L, Liu M, Chen L, Zhao T, Zhang J-Y, Lv Z, et al. Streamlined mesoporous silica nanoparticles with tunable curvature from interfacial dynamic-migration technique for nanomotors. Nano Lett. 2021;21:6071–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM. The impact of floor cost on the uptake and organic operate of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials. 2007;28:2959–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi AV, Peng YY, Li L, Hao X, Tan T, Hughes TC. Picture-modulated therapeutic protein launch from a hydrogel depot utilizing seen gentle. Angew Chem Int Ed. 2016;129:986–91.


    Google Scholar
     

  • Shen T, Zhang Y, Kirillov AM, Cai H, Huang Ok, Liu W, Tang Y. Two-photon sensitized hole Gd2O3:Eu(3+) nanocomposites for real-time dual-mode imaging and monitoring of anticancer drug launch. Chem Commun. 2015;52:1447–50.


    Google Scholar
     

  • Sung SE, Hwang M, Kim AY, Lee EM, Lee EJ, Hwang SK, Kim SY, Kim HK, Jeong KS. MYOD overexpressed equine adipose-derived stem cells enhanced myogenic differentiation potential. Cell Transpl. 2016;25:2017–26.


    Google Scholar
     

  • Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, Pan J, Mei L, Pan G. A drug-self-gated mesoporous antitumor nanoplatform primarily based on pH-sensitive dynamic covalent bond. Adv Funct Mater. 2017;27:1605985.


    Google Scholar
     

  • Zou Z, Li S, He D, He X, Wang Ok, Li L, Yang X, Li H. A flexible stimulus-responsive metallic–natural framework for dimension/morphology tunable hole mesoporous silica and pH-triggered drug supply. J Mater Chem B. 2017;5:2126–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Ok, Xu H, Jia X, Chen Y, Ma M, Solar L, Chen H. Ultrasound-triggered nitric oxide launch platform primarily based on power transformation for focused inhibition of pancreatic tumor. ACS Nano. 2016;10:10816.

    CAS 
    PubMed 

    Google Scholar
     

  • Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B. 2016;4:5078–100.

    CAS 
    PubMed 

    Google Scholar
     

  • Farokhzad OC, Langer R. Affect of nanotechnology on drug supply. ACS Nano. 2009;3:16–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y-S, Haynes CL. Impacts of mesoporous silica nanoparticle dimension, pore ordering, and pore integrity on hemolytic exercise. J Am Chem Soc. 2010;132:4834–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan MC, Chow GM, Ren L, Zhang Q. Inorganic nanoparticles for biomedical functions. In: Shi D, editor. NanoScience in biomedicine. Berlin: Springer; 2009. p. 272–89.


    Google Scholar
     

  • Lage H. An summary of most cancers multidrug resistance: a nonetheless unsolved drawback. Cell Mol Life Sci. 2008;65:3145–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQ. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and supply carriers. Nanoscale. 2011;3:2801–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Zhang Z, Li H, Cai J, Wei W, Liu S. Fe3O4-capped mesoporous silica foam for pH-responsive drug supply. J Nanosci Nanotechnol. 2016;16:6781–7.

    CAS 

    Google Scholar
     

  • Huang S, Track L, Xiao Z, Hu Y, Peng M, Li J, Zheng X, Wu B, Yuan C. Graphene quantum dot-decorated mesoporous silica nanoparticles for prime aspirin loading capability and its pH-triggered launch. Anal Strategies. 2016;8:2561–7.

    CAS 

    Google Scholar
     

  • Zhao C-X, Yu L, Middelberg APJ. Magnetic mesoporous silica nanoparticles end-capped with hydroxyapatite for pH-responsive drug launch. J Mater Chem B. 2013;1:4828–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang P, Chen S, Cao Z, Wang G. NIR light-, temperature-, pH-, and redox-responsive polymer-modified diminished graphene oxide/mesoporous silica sandwich-like nanocomposites for managed launch. ACS Appl Mater Interfaces. 2017;9:29055–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Quan CY, Chen JX, Wang HY, Li C, Chang C, Zhang XZ, Zhuo RX. Core-shell nanosized assemblies mediated by the alpha-beta cyclodextrin dimer with a tumor-triggered concentrating on property. ACS Nano. 2010;4:4211–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Yuan ZF, Wang Y, Chen WH, Luo GF, Cheng SX, Zhuo RX, Zhang XZ. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered concentrating on drug supply. J Am Chem Soc. 2013;135:5068–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Feng Y, Xu G, Chen Y, Luo Y, Track J, Bao Y, Yang J, Yu C, Li Y, et al. MAPK-targeted drug delivered by a pH-sensitive MSNP nanocarrier synergizes with PD-1 blockade in melanoma with out T-Cell suppression. Adv Func Mater. 2019;29:1806916.


    Google Scholar
     

  • Wagner J, Gossl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hocevar S, Taskoparan B, Poller L, Datz S, et al. Mesoporous silica nanoparticles as pH-responsive service for the immune-activating drug resiquimod improve the native immune response in mice. ACS Nano. 2021;15:4450–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang RL, Pratiwi FW, Chen BC, Chen P, Wu SH, Mou CY. Simultaneous single-particle monitoring and dynamic pH sensing reveal lysosome-targetable mesoporous silica nanoparticle pathways. ACS Appl Mater Interfaces. 2020;12:42472–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Samykutty A, Grizzle WE, Fouts BL, McNally MW, Chuong P, Thomas A, Chiba A, Otali D, Woloszynska A, Mentioned N, et al. Optoacoustic imaging identifies ovarian most cancers utilizing a microenvironment focused theranostic wormhole mesoporous silica nanoparticle. Biomaterials. 2018;182:114–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi SR, Jang D-J, Kim S, An S, Lee J, Oh E, Kim J. Polymer-coated spherical mesoporous silica for pH-controlled supply of insulin. J Mater Chem B. 2014;2:616–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Tu J, Du G, Reza Nejadnik M, Monkare J, van der Maaden Ok, Bomans PHH, Sommerdijk N, Slutter B, Jiskoot W, Bouwstra JA, Kros A. Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen supply. Pharm Res. 2017;34:1693–706.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Y, Li NX, Yin HL, Chen TY, Yang Q, Wu M. Thermo- and pH-responsive, lipid-coated, mesoporous silica nanoparticle-based twin drug supply system to enhance the antitumor impact of hydrophobic medication. Mol Pharm. 2019;16:422–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Jiang J, Chang CH, Liao YP, Lodico JJ, Tang I, Zheng E, Qiu W, Lin M, Wang X, et al. Growth of facile and versatile platinum drug delivering silicasome nanocarriers for environment friendly pancreatic most cancers chemo-immunotherapy. Small. 2021;17:e2005993.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Jiang J, Liao YP, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei KC, et al. Mixture chemo-immunotherapy for pancreatic most cancers utilizing the immunogenic results of an irinotecan silicasome nanocarrier plus anti-PD-1. Adv Sci. 2021;8:2002147.

    CAS 

    Google Scholar
     

  • Yang H, Chen Y, Chen ZY, Geng Y, Xie XX, Shen X, Li TT, Li S, Wu CH, Liu YY. Chemo-photodynamic mixed gene remedy and dual-modal most cancers imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci. 2017;5:1001–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang D, Wang T, Su Z, Xue L, Mo R, Zhang C. Reversing most cancers multidrug resistance in xenograft fashions by way of orchestrating a number of actions of purposeful mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2016;8(34):22431–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Zhao T, Zhao M, Wang W, Solar C, Liu L, Li Q, Zhang F, Zhao D, Li X. Measurement and cost dual-transformable mesoporous nanoassemblies for enhanced drug supply and tumor penetration. Chem Sci. 2020;11:2819–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Yang Y, Wei H, Shan X, Wang X, Ou M, Liu Q, Gao N, Chen H, Mei L, Zeng X. Cost-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized remedy. J Management Launch. 2021;338:719–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar Q, You Q, Pang X, Tan X, Wang J, Liu L, Guo F, Tan F, Li N. A photoresponsive and rod-shape nanocarrier: single wavelength of sunshine triggered photothermal and photodynamic remedy primarily based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials. 2017;122:188.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Li M, Dong W. Janus silver/silica nanoplatforms for light-activated liver most cancers chemo/photothermal remedy. ACS Appl Mater Interfaces. 2017;9:30306–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Lv RC, Wang DP, Xiao LY, Chen GY, Xia J, Prasad PN. Steady ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging along with photothermal remedy. Sci Rep. 2017;7:15753.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan L, Liu J, Shi J. Most cancers cell nucleus-targeting nanocomposites for superior tumor therapeutics. Chem Soc Rev. 2018;47:6930–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Bu W, Pan L, Shi J. NIR-triggered anticancer drug supply by upconverting nanoparticles with built-in azobenzene-modified mesoporous silica. Angew Chem Int Ed. 2013;52:4375–9.

    CAS 

    Google Scholar
     

  • Yang G, Lv R, He F, Qu F, Gai S, Du S, Wei Z, Yang P. A core/shell/satellite tv for pc anticancer platform for 808 NIR light-driven multimodal imaging and mixed chemo-/photothermal remedy. Nanoscale. 2015;7:13747–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Carling CJ, Nourmohammadian F, Boyer JC, Branda NR. Distant-control photorelease of caged compounds utilizing near-infrared gentle and upconverting nanoparticles. Angew Chem Int Ed. 2010;49:3782–5.

    CAS 

    Google Scholar
     

  • Kharlamov AN, Feinstein JA, Cramer JA, Boothroyd JA, Shishkina EV, Shur V. Plasmonic photothermal remedy of atherosclerosis with nanoparticles: long-term outcomes and security in NANOM-FIM trial. Future Cardiol. 2017;13:345–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Dong JP, Min KH, Hong JL, Kim Ok, Kwon IC, Jeong SY, Sang CL. Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic remedy. J Mater Chem B. 2016;4:1219–27.


    Google Scholar
     

  • Martínez-Carmona M, Lozano D, Baeza A, Colilla M, Vallet-Regí M. A novel seen gentle responsive nanosystem for most cancers remedy. Nanoscale. 2017;9:15967–73.

    PubMed 

    Google Scholar
     

  • Chai S, Guo Y, Zhang Z, Chai Z, Ma Y, Qi L. Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for crimson light-induced drug launch. Nanotechnology. 2017;28:145101.

    PubMed 

    Google Scholar
     

  • Dai Y, Bi H, Deng X, Li C, He F, Ma P, Yang P, Lin J. 808 nm near-infrared gentle managed dual-drug launch and most cancers remedy in vivo by upconversion mesoporous silica nanostructures. J Mater Chem B. 2017;5:2086–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Vuilleumier J, Gaulier G, De Matos R, Ortiz D, Menin L, Campargue G, Mas C, Fixed S, Le Dantec R, Mugnier Y, et al. Two-photon-triggered photorelease of caged compounds from multifunctional harmonic nanoparticles. ACS Appl Mater Interfaces. 2019;11:27443–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao W, Wang H, Wang H, Han Y, Zheng Z, Liu X, Feng B, Zhang H. Mild-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug supply and lubrication enhancement for the remedy of osteoarthritis. Nanoscale. 2021;13:6394–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar JT, Yu ZQ, Hong CY, Pan CY. Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug launch. Macromol Fast Commun. 2012;33:811–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Hei MY, Wang J, Wang Ok, Zhu WP, Ma PX. Dually responsive mesoporous silica nanoparticles regulated by higher important answer temperature polymers for intracellular drug supply. J Mater Chem B. 2017;5:9497–501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho IH, Shim MK, Jung B, Jang EH, Park MJ, Kang HC, Kim JH. Warmth shock responsive drug supply system primarily based on mesoporous silica nanoparticles coated with temperature delicate gatekeeper. Microporous Mesoporous Mater. 2017;253:96–101.

    CAS 

    Google Scholar
     

  • Chung PW, Kumar R, Pruski M, Lin VSY. Temperature responsive answer partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres. Adv Func Mater. 2008;18:1390–8.

    CAS 

    Google Scholar
     

  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug supply. Adv Mater. 2012;24:1504–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian BS, Yang C. Temperature-responsive nanocomposites primarily based on mesoporous SBA-15 silica and PNIPAAm: synthesis and characterization. J Phys Chem C. 2009;113:4925–31.

    CAS 

    Google Scholar
     

  • Manzano M, Vallet-Regi M. Ultrasound responsive mesoporous silica nanoparticles for biomedical functions. Chem Commun. 2019;55:2731–40.

    CAS 

    Google Scholar
     

  • Van den Bijgaart RJE, Eikelenboom DC, Hoogenboom M, Futterer JJ, Den Brok MH, Adema GJ. Thermal and mechanical high-intensity centered ultrasound: views on tumor ablation, immune results and mixture methods. Most cancers Immunol Immunother. 2017;66:247–58.

    PubMed 

    Google Scholar
     

  • Paris JL, Mannaris C, Cabanas MV, Carlisle R, Manzano M, Vallet-Regi M, Coussios CC. Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug supply. Chem Eng J. 2018;340:2–8.

    CAS 

    Google Scholar
     

  • Li R, Mei X, Li X, Zhang C, Ruan L. A bolt-like-blocking nanovalve on mesoporous silica nanoparticles for managed launch. Microporous Mesoporous Mater. 2021;317:111007.

    CAS 

    Google Scholar
     

  • Zhao S, Xu M, Cao C, Yu Q, Zhou Y, Liu J. A redox-responsive technique utilizing mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. J Mater Chem B. 2017;5:6908–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Hadipour Moghaddam SP, Yazdimamaghani M, Ghandehari H. Glutathione-sensitive hole mesoporous silica nanoparticles for managed drug supply. J Management Launch. 2018;282:62–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Cheng C-A, Zink JI. Spatial, temporal, and dose management of drug supply utilizing noninvasive magnetic stimulation. ACS Nano. 2019;13:1292–308.

    CAS 
    PubMed 

    Google Scholar
     

  • Ruan L, Chen W, Wang R, Lu J, Zink JI. Magnetically stimulated drug launch utilizing nanoparticles capped by self-assembling peptides. ACS Appl Mater Interfaces. 2019;11:43835–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin F-C, Zink JI. Probing the native nanoscale heating mechanism of a magnetic core in mesoporous silica drug-delivery nanoparticles utilizing fluorescence depolarization. J Am Chem Soc. 2020;142:5212–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu H-J, Luan X, Feng H-Y, Dong X, Yang S-C, Chen Z-J, Cai Q-Y, Lu Q, Zhang Y, Solar P, et al. Built-in mixture remedy utilizing a “Good” chemotherapy and microRNA supply system improves outcomes in an orthotopic colorectal most cancers mannequin. Adv Func Mater. 2018;28:1801118.


    Google Scholar
     

  • Yan H, Dong J, Huang X, Du X. Protein-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles by way of diselenide linkages for drug launch monitoring in actual time and tumor chemotherapy. ACS Appl Mater Interfaces. 2021;13:29070–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Cai Y, Deng T, Pan Y, Zink JI. Use of ferritin capped mesoporous silica nanoparticles for redox and pH triggered drug launch in vitro and in vivo. Adv Func Mater. 2020;30:2002043.

    CAS 

    Google Scholar
     

  • Lu J, Luo B, Chen Z, Yuan Y, Kuang Y, Wan L, Yao L, Chen X, Jiang B, Liu J, Li C. Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle primarily based drug supply system for focused most cancers remedy. Int J Biol Macromol. 2020;146:363–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Wang L, Han X, Dou J, Jiang X, Yuan J. Polydopamine/keratin complexes as gatekeepers of mesoporous silica nanoparticles for pH and GSH twin responsive drug supply. Mater Lett. 2021;293:129676.

    CAS 

    Google Scholar
     

  • Yang Y, Lin Y, Di D, Zhang X, Wang D, Zhao Q, Wang S. Gold nanoparticle-gated mesoporous silica as redox-triggered drug supply for chemo-photothermal synergistic remedy. J Colloid Interface Sci. 2017;508:323–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Sasikala ARK, Unnithan AR, Chan HP, Kim CS. Design and utility of a wise nanodevice by combining cationic drug supply and hyperthermia for most cancers apoptosis. J Mater Chem B. 2016;4:785–92.


    Google Scholar
     

  • Ahkam QM, Khan EU, Iqbal J, Murtaza A, Khan MT. Synthesis and characterization of cobalt-doped SiO2 nanoparticles. Physica B-Condensed Matter. 2019;572:161–7.

    CAS 

    Google Scholar
     

  • Chen L, Di J, Cao C, Zhao Y, Ma Y, Luo J, Wen Y, Track W, Track Y, Jiang L. A pH-driven DNA nanoswitch for responsive managed launch. Chem Commun. 2011;47:2850–2.

    CAS 

    Google Scholar
     

  • Guo WS, Luo Y, Wei Ok, Gao X. A mobile stage biocompatibility and biosafety analysis of mesoporous SiO2-based nanocomposite with lanthanum species. J Mater Sci. 2012;47:1514–21.

    CAS 

    Google Scholar
     

  • Tang H, Guo J, Solar Y, Chang B, Ren Q, Yang W. Facile synthesis of pH delicate polymer-coated mesoporous silica nanoparticles and their utility in drug supply. Int J Pharm. 2011;421:388–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Kankala RK, Tsai P-Y, Kuthati Y, Wei P-R, Liu C-L, Lee C-H. Overcoming multidrug resistance by co-delivery of ROS-generating nano-machinery in most cancers therapeutics. J Mater Chem B. 2017;5:1507–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Wu P, He Z, He H, Rong W, Li J, Zhou D, Huang Y. Mesoporous silica nanoparticles with lactose-mediated concentrating on impact to ship platinum(IV) prodrug for liver most cancers remedy. J Mater Chem B. 2017;5:7591–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H, Amanlou M. Mesoporous silica nanoparticles functionalized with folic acid/methionine for lively focused supply of docetaxel. Onco Targets Ther. 2016;9:7315–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C. Hyaluronic acid modified mesoporous silica nanoparticles for focused drug supply to CD44-overexpressing most cancers cells. Nanoscale. 2013;5:178–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Qu W, Meng B, Yu Y, Wang S. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. Int J Nanomed. 2018;13:4379–89.

    CAS 

    Google Scholar
     

  • Ali OM, Bekhit AA, Khattab SN, Helmy MW, Abdel-Ghany YS, Teleb M, Elzoghby AO. Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast most cancers remedy. Colloids Surf B: Biointerfaces. 2020;188:110824.

    CAS 
    PubMed 

    Google Scholar
     

  • Du D, Fu HJ, Ren WW, Li XL, Guo LH. PSA focused dual-modality manganese oxide-mesoporous silica nanoparticles for prostate most cancers imaging. Biomed Pharmacother. 2020;121:109614.

    CAS 
    PubMed 

    Google Scholar
     

  • Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen J-C, Stoddart JF, Tamanoi F, Zink JI. Synthesis of biomolecule-modified mesoporous silica nanoparticles for focused hydrophobic drug supply to most cancers cells. Small. 2011;7:1816–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Han Z, Schur RM, Lu Z-R. Focused mesoporous silica nanoparticles delivering arsenic trioxide with setting delicate drug launch for efficient remedy of triple damaging breast most cancers. ACS Biomater Sci Eng. 2016;2:501–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y-J, Zhang A-Q, Hu J-J, He F, Zeng X, Zhang X-Z. Multifunctional peptide-amphiphile end-capped mesoporous silica nanoparticles for tumor concentrating on drug supply. ACS Appl Mater Interfaces. 2017;9:2093–103.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng W, Nie J, Gao N, Liu G, Tao W, Xiao X, Jiang L, Liu Z, Zeng X, Mei L. A multifunctional nanoplatform in opposition to multidrug resistant most cancers: merging the most effective of focused chemo/gene/photothermal remedy. Adv Func Mater. 2017;27:1704135.


    Google Scholar
     

  • Gisbert-Garzarán M, Lozano D, Matsumoto Ok, Komatsu A, Manzano M, Tamanoi F, Vallet-Regí M. Designing mesoporous silica nanoparticles to beat organic limitations by incorporating concentrating on and endosomal escape. ACS Appl Mater Interfaces. 2021;13:9656–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Q, Ma X, Zhao Y. Focused supply of doxorubicin to mitochondria utilizing mesoporous silica nanoparticle nanocarriers. Nanoscale. 2015;7:16677–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Ibragimova AR, Gabdrakhmanov DR, Valeeva FG, Vasileva LA, Sapunova AS, Voloshina AD, Saifina AF, Gubaidullin AT, Danilaev MP, Egorova SR, et al. Mitochondria-targeted mesoporous silica nanoparticles noncovalently modified with triphenylphosphonium cation: physicochemical traits, cytotoxicity and intracellular uptake. Int J Pharm. 2021;604:120776.

    CAS 
    PubMed 

    Google Scholar
     

  • López V, Villegas MR, Rodríguez V, Villaverde G, Lozano D, Baeza A, Vallet-Regí M. Janus mesoporous silica nanoparticles for twin concentrating on of tumor cells and mitochondria. ACS Appl Mater Interfaces. 2017;9:26697–706.

    PubMed 

    Google Scholar
     

  • Luo G-F, Chen W-H, Liu Y, Lei Q, Zhuo R-X, Zhang X-Z. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep. 2014;4:6064.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, Gong T, Zhang L, Solar X. The pore dimension of mesoporous silica nanoparticles regulates their antigen supply effectivity. Sci Adv. 2020;6:eaaz4462.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang P-Ok, Lin S-X, Tsai M-J, Leong MK, Lin S-R, Kankala RK, Lee C-H, Weng C-F. Encapsulation of 16-Hydroxycleroda-3,13-Dine-16,15-olide in mesoporous silica nanoparticles as a pure dipeptidyl peptidase-4 inhibitor potentiated hypoglycemia in diabetic mice. Nanomaterials. 2017;7:112.

    PubMed Central 

    Google Scholar
     

  • Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, Dong Y, Cai B, Bai G, Gooding JJ, et al. Injectable hydrogel with MSNs/microRNA-21–5p supply permits each immunomodification and enhanced angiogenesis for myocardial infarction remedy in pigs. Sci Adv. 2021;7:eabd6740.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baghirov H, Karaman D, Viitala T, Duchanoy A, Lou Y-R, Mamaeva V, Pryazhnikov E, Khiroug L, de Lange DC, Sahlgren C, Rosenholm JM. Feasibility examine of the permeability and uptake of mesoporous silica nanoparticles throughout the blood-brain barrier. PLoS ONE. 2016;11:e0160705.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng J, Li M, Wu L, Chen C, Qu X. Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s illness remedy. Adv Healthc Mater. 2012;1:332–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Track Y, Du D, Li L, Xu J, Dutta P, Lin Y. In vitro examine of receptor-mediated silica nanoparticles supply throughout blood-brain barrier. ACS Appl Mater Interfaces. 2017;9:20410–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fateh Basharzad S, Hamidi M, Maleki A, Karami Z, Mohamadpour H, Reza Saghatchi Zanjani M. Polysorbate-coated mesoporous silica nanoparticles as an environment friendly service for improved rivastigmine mind supply. Mind Res. 2022;1781:147786.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Lei C, Yu C. Mesoporous silica nanoparticles for protein safety and supply. Entrance Chem. 2019;7:290.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Lei C, Huang L, Zhang J, Zhang H, Track H, Yu M, Wu Y, Chen C, Yu C. Glucose-responsive nanosystem mimicking the physiological insulin secretion by way of an enzyme-polymer layer-by-layer coating technique. Chem Mater. 2017;29:7725–32.

    CAS 

    Google Scholar
     

  • Zhao Y, Trewyn BG, Slowing II, Lin VSY. Mesoporous silica nanoparticle-based double drug supply system for glucose-responsive managed launch of insulin and cyclic AMP. J Am Chem Soc. 2009;131:8398–400.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao W, Zhang H, He Q, Li Y, Gu J, Li L, Li H, Shi J. A glucose-responsive managed launch of insulin system primarily based on enzyme multilayers-coated mesoporous silica particles. Chem Commun. 2011;47:9459–61.

    CAS 

    Google Scholar
     

  • Wang Y, Cheng S, Hu W, Lin X, Cao C, Zou S, Tong Z, Jiang G, Kong X. Polymer-grafted hole mesoporous silica nanoparticles built-in with microneedle patches for glucose-responsive drug supply. Entrance Mater Sci. 2021;15:98–112.


    Google Scholar
     

  • Xuan MJ, Shao JX, Lin XK, Dai LR, He Q. Self-propelled janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and supply. ChemPhysChem. 2014;15:2255–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Wan M, Wang Q, Wang R, Wu R, Li T, Fang D, Huang Y, Yu Y, Fang L, Wang X, et al. Platelet-derived porous nanomotor for thrombus remedy. Sci Adv. 2020;6:eaaz9014.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na HB, Hyeon T. Nanostructured T1 MRI distinction brokers. J Mater Chem. 2009;19:6267–73.

    CAS 

    Google Scholar
     

  • de Chermont QL, Chaneac C, Seguin J, Pelle F, Maitrejean S, Jolivet JP, Gourier D, Bessodes M, Scherman D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci USA. 2007;104:9266–71.


    Google Scholar
     

  • Zhang X, Shastry S, Bradforth SE, Nadeau JL. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy. Nanoscale. 2015;7:240–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X. Radionuclide (131)I-labeled multifunctional dendrimers for focused SPECT imaging and radiotherapy of tumors. Nanoscale. 2015;7:18169–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Qian H, Ji Y, Li Z, Shao Y, Hu Y, Tong G, Li L, Guo W, Guo H. Mesoporous silica-coated NaYF4 nanocrystals: facile synthesis, in vitro bioimaging and photodynamic remedy of most cancers cells. RSC Adv. 2012;2:12263–8.

    CAS 

    Google Scholar
     

  • Cai H, Li Ok, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X. Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for focused twin mode CT/MR imaging of tumors. Small. 2015;11:4584–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen YY, Deng XR, Li CX, He F, Liu B, Hou ZY, Cheng ZY, Xing BG, Lin J. Stimuli-responsive nanocomposites for magnetic concentrating on synergistic multimodal remedy and T-1/T-2-weighted dual-mode imaging. Nanomed Nanotechnol Biol Med. 2017;13:875–83.

    CAS 

    Google Scholar
     

  • Zhang L, Wang Y, Tang YH, Jiao Z, Xie CY, Zhang HJ, Gu P, Wei XB, Yang GY, Gu HC, Zhang CF. Excessive MRI efficiency fluorescent mesoporous silica-coated magnetic nanoparticles for monitoring neural progenitor cells in an ischemic mouse mannequin. Nanoscale. 2013;5:4506–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Liu J, Liu Y, Wang L, Cao M, Ji Y, Wu X, Xu Y, Bai B, Miao Q, et al. Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided remedy. Adv Mater. 2016;28:8950–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Solar X, Zheng S, Li J, Fu X, Zhang H. A brand new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and most cancers remedy. Biomaterials. 2018;152:15–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110:3019–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Guillet-Nicolas R, Laprise-Pelletier M, Nair MM, Chevallier P, Lagueux J, Gossuin Y, Laurent S, Kleitz F, Fortin M-A. Manganese-impregnated mesoporous silica nanoparticles for sign enhancement in MRI cell labelling research. Nanoscale. 2013;5:11499–511.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu L, Chen Y, Wu M, Cai X, Yao H, Zhang L, Chen H, Shi J. “Manganese Extraction” technique permits tumor-sensitive biodegradability and theranostics of nanoparticles. J Am Chem Soc. 2016;138:9881–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for environment friendly magnetic resonance imaging distinction brokers. Chem Soc Rev. 2012;41:2575–89.

    CAS 
    PubMed 

    Google Scholar
     

  • He QJ, Zhang ZW, Gao F, Li YP, Shi JL. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: results of particle dimension and pegylation. Small. 2011;7:271–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee JE, Lee DJ, Lee N, Kim BH, Choi SH, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for pH managed drug launch and twin modal imaging. J Mater Chem. 2011;21:16869–72.

    CAS 

    Google Scholar
     

  • Taylor KM, Kim JS, Rieter WJ, An H, Lin W, Lin W. Mesoporous silica nanospheres as extremely environment friendly MRI distinction brokers. J Am Chem Soc. 2008;130:2154–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Han Y-H, Kankala R, Wang S-B, Chen A-Z. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical functions. Nanomaterials. 2018;8:360.

    PubMed Central 

    Google Scholar
     

  • Saxena V, Sadoqi M, Shao J. degradation kinetics of indocyanine inexperienced in aqueous answer. J Pharm Sci. 2003;92:2090–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R, Theuer CP, Barnhart TE, Cai W. Engineering of hole mesoporous silica nanoparticles for remarkably enhanced tumor lively concentrating on efficacy. Sci Rep. 2014;4:5080.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang XL, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang LX, Zhang GF, Zhu L, Gao HK, Choi HS, et al. Lengthy-term multimodal imaging of tumor draining sentinel lymph nodes utilizing mesoporous silica-based nanoprobes. Biomaterials. 2012;33:4370–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Liu H, Hou W, Gao J, Duan Y, Wei D, Gong X, Wang H, Wu X-I, Chang J. An NIR-responsive mesoporous silica nanosystem for synergetic photothermal-immunoenhancement remedy of hepatocellular carcinoma. J Mater Chem B. 2020;8:251–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Pu F, Liu X, Yang X, Liu Z, Ren J, Wang S, Qu X. Versatile fluorescent conjugated polyelectrolyte-capped mesoporous silica nanoparticles for managed drug supply and imaging. ChemPlusChem. 2013;78:656–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim T, Lee N, Park YI, Kim J, Kim J, Lee EY, Yi M, Kim BG, Hyeon T, Yu T, Na HB. Mesoporous silica-coated luminescent Eu3+ doped GdVO4 nanoparticles for multimodal imaging and drug supply. RSC Adv. 2014;4:45687–95.

    CAS 

    Google Scholar
     

  • Wang J, Xu M, Wang Ok, Chen Z. Steady mesoporous silica nanoparticles integrated with MoS2 and AIE for focused fluorescence imaging and photothermal remedy of most cancers cells. Colloids Surf B Biointerfaces. 2019;174:324–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gönen M, Kalaigian H, Schöder H, et al. Medical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6:260ra149.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Ok, Meng X, Yang Z, Cao Y, Cheng Y, Wang D, Lu H, Shi Z, Dong H, Zhang X. Most cancers cell membrane camouflaged nanoprobe for catalytic ratiometric photoacoustic imaging of microRNA in dwelling mice. Adv Mater. 2019;31:e1807888.

    PubMed 

    Google Scholar
     

  • Liberman A, Martinez HP, Ta CN, Barback CV, Mattrey RF, Kono Y, Blair SL, Trogler WC, Kummel AC, Wu Z. Hole silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials. 2012;33:5124–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Linden M. Synthesis, characterization, and biodistribution of a number of Zr-89-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale. 2014;6:4928–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng Y, Panwar N, Tng DJH, Tjin SC, Wang Ok, Yong Ok-T. The appliance of mesoporous silica nanoparticle household in most cancers theranostics. Coord Chem Rev. 2016;319:86–109.

    CAS 

    Google Scholar
     

  • Ji R, Li XY, Zhou C, Tian QW, Li C, Xia SJ, Wang RH, Feng Y, Zhan WW. Figuring out macrophage enrichment in atherosclerotic plaques by concentrating on dual-modal US imaging/MRI primarily based on biodegradable Fe-doped hole silica nanospheres conjugated with anti-CD68 antibody. Nanoscale. 2018;10:20246–55.

    CAS 
    PubMed 

    Google Scholar
     

  • Jin Q, Lin CY, Kang ST, Chang YC, Zheng H, Yang CM, Yeh CK. Superhydrophobic silica nanoparticles as ultrasound distinction brokers. Ultrason Sonochem. 2017;36:262–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Pilapong C, Siriwongnanon S, Keereeta Y. Growth of focused multimodal imaging agent in ionizing radiation-free strategy for visualizing hepatocellular carcinoma cells. Sens Actuators, B Chem. 2017;245:683–94.

    CAS 

    Google Scholar
     

  • Chen PJ, Kang YD, Lin CH, Chen SY, Hsieh CH, Chen YY, Chiang CW, Lee W, Hsu CY, Liao LD, et al. Multitheragnostic multi-GNRs crystal-seeded magnetic nanoseaurchin for enhanced in vivo mesenchymal-stem-cell homing, multimodal imaging, and stroke remedy. Adv Mater. 2015;27:6488–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Floor nanopore engineering of 2D MXenes for focused and synergistic multitherapies of hepatocellular carcinoma. Adv Mater. 2018;30:e1706981.

    PubMed 

    Google Scholar
     

  • Xue SH, Wang Y, Wang MX, Zhang L, Du XX, Gu HC, Zhang CF. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomed. 2014;9:2527–38.


    Google Scholar
     

  • Li X, Xing L, Zheng Ok, Wei P, Du L, Shen M, Shi X. Formation of gold nanostar-coated hole mesoporous silica for tumor multimodality imaging and photothermal remedy. ACS Appl Mater Interfaces. 2017;9:5817–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Qin L, Niu D, Jiang Y, He J, Jia X, Zhao W, Li P, Li Y. Confined progress of a number of gold nanorices in dual-mesoporous silica nanospheres for improved computed tomography imaging and photothermal remedy. Int J Nanomed. 2019;14:1519–32.

    CAS 

    Google Scholar
     

  • Wang Z, Shao D, Chang Z, Lu M, Wang Y, Yue J, Yang D, Li M, Xu Q, Dong WF. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano. 2017;11:12732–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Buchtova N, Rethore G, Boyer C, Guicheux J, Rambaud F, Valle Ok, Belleville P, Sanchez C, Chauvet O, Weiss P, Le Bideau J. Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. J Mater Sci. 2013;24:1875–84.

    CAS 

    Google Scholar
     

  • Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological methods for engineering advanced tissues. Nat Nanotechnol. 2011;6:13–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Ding Q, Wang J, Deng L, Yang L, Tao L, Lei H, Lu S. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes. Nanoscale. 2016;8:2011–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Ren M, Han Z, Li J, Feng G, Ouyang S. Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Mater Sci Eng, C. 2015;56:348–55.

    CAS 

    Google Scholar
     

  • Zhu Ok, Wu M, Lai H, Guo C, Li J, Wang Y, Chen Y, Wang C, Shi J. Nanoparticle-enhanced era of gene-transfected mesenchymal stem cells for in vivo cardiac restore. Biomaterials. 2016;74:188–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Mora-Raimundo P, Lozano D, Manzano M, Vallet-Regí M. Nanoparticles to knockdown osteoporosis-related gene and promote osteogenic marker expression for osteoporosis remedy. ACS Nano. 2019;13:5451–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM. Revisiting silica primarily based ordered mesoporous supplies: medical functions. J Mater Chem. 2006;16:26–31.


    Google Scholar
     

  • Trejo CG, Lozano D, Manzano M, Doadrio JC, Salinas AJ, Dapía S, Gómez-Barrena E, Vallet-Regí M, García-Honduvilla N, Buján J, Esbrit P. The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect mannequin. Biomaterials. 2010;31:8564–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu M, Wang H, Liu J, He H, Hua X, He Q, Zhang L, Ye X, Shi J. A mesoporous silica nanoparticulate/β-TCP/BG composite drug supply system for osteoarticular tuberculosis remedy. Biomaterials. 2011;32:1986–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou P, Cheng X, Xia Y, Wang P, Zou Ok, Xu S, Du J. Natural/inorganic composite membranes primarily based on poly(L-lactic-co-glycolic acid) and mesoporous silica for efficient bone tissue engineering. ACS Appl Mater Interfaces. 2014;6:20895–903.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao TC, Chen L, Wang PY, Li BH, Lin RF, Al-Khalaf AA, Hozzein WN, Zhang F, Li XM, Zhao DY. Floor-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat Commun. 2019;10:4387.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu HB, Li FY, Wang SF, Lu JX, Li JQ, Du Y, Solar XL, Chen XY, Gao JQ, Ling DS. Ceria nanocrystals adorned mesoporous silica nanoparticle primarily based ROS-scavenging tissue adhesive for extremely environment friendly regenerative wound therapeutic. Biomaterials. 2018;151:66–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Johnson KL, Mason CJ, Muddiman DC, Eckel JE. Evaluation of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance. Anal Chem. 2004;76:5097–103.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian R, Zhang H, Ye M, Jiang X, Hu L, Li X, Bao X, Zou H. Selective extraction of peptides from human plasma by extremely ordered mesoporous silica particles for peptidome evaluation. Angew Chem Int Ed. 2007;46:962–5.

    CAS 

    Google Scholar
     

  • Chen H, Liu S, Yang H, Mao Y, Deng C, Zhang X, Yang P. Selective separation and enrichment of peptides for MS evaluation utilizing the microspheres composed of Fe3O4@nSiO2 core and perpendicularly aligned mesoporous SiO2 shell. Proteomics. 2010;10:930–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Diamandis EP. Peptidomics for most cancers analysis: current and future. J Proteome Res. 2006;5:2079–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Li YL, Liu LL, Wu H, Deng CH. Magnetic mesoporous silica nanocomposites with binary metallic oxides core-shell construction for the selective enrichment of endogenous phosphopeptides from human saliva. Anal Chim Acta. 2019;1079:111–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Solar N, Deng C, Li Y, Zhang X. Measurement-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore partitions for selective enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces. 2014;6:11799–804.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Li Z, Chen Z, Ren J, Qu X. Mesoporous silica-encapsulated gold nanoparticles as synthetic enzymes for self-activated cascade catalysis. Biomaterials. 2013;34:2600–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Ren J, Qu X. Catalytically lively nanomaterials: a promising candidate for synthetic enzymes. Acc Chem Res. 2014;47:1097–105.

    CAS 
    PubMed 

    Google Scholar
     

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like exercise of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed. 2009;48:2308–12.

    CAS 

    Google Scholar
     

  • Park KS, Kim MI, Cho D-Y, Park HG. Label-free colorimetric detection of nucleic acids primarily based on target-induced shielding in opposition to the peroxidase-mimicking exercise of magnetic nanoparticles. Small. 2011;7:1521–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Massimiliano C, Cristina DP, Roberto M, Michele R. The catalytic exercise of “Bare” gold particles. Angew Chem Int Ed. 2004;43:5812–5.


    Google Scholar
     

  • Zhang M, Ye B-C. Label-free fluorescent detection of copper(ii) utilizing DNA-templated extremely luminescent silver nanoclusters. Analyst. 2011;136:5139–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Yang X, Feng J, Tang Y, Jiang Y, He N. Label-free detection of DNA by combining gated mesoporous silica and catalytic sign amplification of platinum nanoparticles. Analyst. 2014;139:6088–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Calmo R, Chiado A, Fiorilli S, Ricciardi C. Superior ELISA-like biosensing primarily based on ultralarge-pore silica microbeads. ACS Appl Bio Mater. 2020;3:5787–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Liu Y, Nie YX, Ma Q, Zhao B. Floor plasmon coupling electrochemiluminescence assay primarily based on the usage of AuNP@C(3)N(4)QD@mSiO(2) for the dedication of the Shiga toxin-producing Escherichia coli (STEC) gene. Microchim Acta. 2019;186:656.


    Google Scholar
     

  • Gu TX, Ren ZH, Li X, Huang J, Han GR. A versatile sensible membrane consisting of GO composite fibres and upconversion MSNs for microRNA detection. Chem Commun. 2019;55:9104–7.

    CAS 

    Google Scholar
     

  • Jiang Q, Wu ZY, Wang YM, Cao Y, Zhou CF, Zhu JH. Fabrication of photoluminescent ZnO/SBA-15 by immediately dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J Mater Chem. 2006;16:1536–42.

    CAS 

    Google Scholar
     

  • Niu Ok, Liang L, Gu Y, Ke L, Duan F, Chen M. Fabrication and photoluminescent properties of ZnO/mesoporous silica composites templated by a chelating surfactant. Langmuir. 2011;27:13820–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Bagwe RP, Zhao X, Tan W. Bioconjugated luminescent nanoparticles for organic functions. J Dispersion Sci Technol. 2003;24:453–64.

    CAS 

    Google Scholar
     

  • Lechevallier S, Jorge J, Silveira RM, Ratel-Ramond N, Neumeyer D, Menu MJ, Gressier M, Marcal AL, Rocha AL, Martines MAU, et al. Luminescence properties of mesoporous silica nanoparticles encapsulating totally different europium complexes: utility for biolabelling. J Nanomater. 2013;2013:11.


    Google Scholar
     

  • Yang P, Quan Z, Lu L, Huang S, Lin J. Luminescence functionalization of mesoporous silica with totally different morphologies and functions as drug supply programs. Biomaterials. 2008;29:692–702.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Ok, Xu L-L, Jiang J-G, Calin N, Lam Ok-F, Zhang S-J, Wu H-H, Wu G-D, Albela B, Bonneviot L, Wu P. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore construction. J Am Chem Soc. 2013;135:2427–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Šoltys M, Balouch M, Kašpar O, Lhotka M, Ulbrich P, Zadražil A, Kovačík P, Štĕpánek F. Analysis of scale-up methods for the batch synthesis of dense and hole mesoporous silica microspheres. Chem Eng J. 2018;334:1135–47.


    Google Scholar
     

  • Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao Y-P, Okene M, Lin J, Lin P, Chang CH, et al. Improved efficacy and diminished toxicity utilizing a custom-designed irinotecan-delivering silicasome for orthotopic colon most cancers. ACS Nano. 2019;13:38–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Janjua TI, Cao Y, Yu C, Popat A. Medical translation of silica nanoparticles. Nat Rev Mater. 2021;6:1072–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanoni DK, Stambuk HE, Madajewski B, Montero PH, Matsuura D, Busam KJ, Ma Ok, Turker MZ, Sequeira S, Gonen M, et al. Use of ultrasmall core-shell fluorescent silica nanoparticles for image-guided sentinel lymph node biopsy in head and neck melanoma: a nonrandomized scientific trial. JAMA Netw Open. 2021;4:e211936–e211936.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Shiny and steady core−shell fluorescent silica nanoparticles. Nano Lett. 2005;5:113–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Kharlamov AN, Tyurnina AE, Veselova VS, Kovtun OP, Shur VY, Gabinsky JL. Silica-gold nanoparticles for atheroprotective administration of plaques: outcomes of the NANOM-FIM trial. Nanoscale. 2015;7:8003–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Cristallini C, Gagliardi M, Barbani N, Giannessi D, Guerra GD. Novel biodegradable, biomimetic and functionalised polymer scaffolds to stop enlargement of post-infarct left ventricular remodelling. J Mater Sci. 2012;23:205–16.

    CAS 

    Google Scholar
     

  • Meola TR, Abuhelwa AY, Joyce P, Clifton P, Prestidge CA. A security, tolerability, and pharmacokinetic examine of a novel simvastatin silica-lipid hybrid formulation in wholesome male contributors. Drug Deliv Transl Res. 2021;11:1261–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Tan A, Eskandar NG, Rao S, Prestidge CA. First in man bioavailability and tolerability research of a silica–lipid hybrid (Lipoceramic) formulation: a Part I examine with ibuprofen. Drug Deliv Transl Res. 2014;4:212–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Bukara Ok, Schueller L, Rosier J, Martens MA, Daems T, Verheyden L, Eelen S, Van Speybroeck M, Libanati C, Martens JA, et al. Ordered mesoporous silica to reinforce the bioavailability of poorly water-soluble medication: proof of idea in man. Eur J Pharm Biopharm. 2016;108:220–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a scientific pilot gadget examine. Proc Natl Acad Sci. 2019;116:18590–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira CA, Goel S, Ehlerding EB, Rosenkrans ZT, Jiang D, Solar T, Aluicio-Sarduy E, Engle JW, Ni D, Cai W. Ultrasmall porous silica nanoparticles with enhanced pharmacokinetics for most cancers theranostics. Nano Lett. 2021;21:4692–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Wang Y, Ran F, Cui Y, Liu C, Zhao Q, Gao Y, Wang D, Wang S. A comparability between sphere and rod nanoparticles concerning their in vivo organic habits and pharmacokinetics. Sci Rep. 2017;7:4131.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Xu H, Zheng S, Su M, Wang J. Genotoxicity of mesoporous silica nanoparticles in human embryonic kidney 293 cells. Drug Check Anal. 2015;7:787–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend upon their form. Nanomedicine. 2015;11:1915–24.

    CAS 
    PubMed 

    Google Scholar
     

  • McCarthy J, Inkielewicz-Stępniak I, Corbalan JJ, Radomski MW. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protecting results of fisetin. Chem Res Toxicol. 2012;25:2227–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH. Measurement-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Schneid AC, Silveira CP, Galdino FE, Ferreira LF, Bouchmella Ok, Cardoso MB. Colloidal stability and redispersibility of mesoporous silica nanoparticles in organic media. Langmuir. 2020;36:11442–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE. Use of dimension and a copolymer design function to enhance the biodistribution and the improved permeability and retention impact of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor mannequin. ACS Nano. 2011;5:4131–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Guo Z, Wang HB, Zhou JJ, Zhang WJ, Chen QW. Multifunctional mesoporous nanoparticles as pH-responsive Fe2+ reservoirs and artemisinin automobiles for synergistic inhibition of tumor progress. Biomaterials. 2014;35:6498–507.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu JJ, Luo Z, Zhang JX, Luo TT, Zhou J, Zhao XJ, Cai KY. Hole mesoporous silica nanoparticles facilitated drug supply by way of cascade pH stimuli in tumor microenvironment for tumor remedy. Biomaterials. 2016;83:51–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Lü S, Gao C, Wang X, Bai X, Duan H, Gao N, Feng C, Liu M. Polymeric micelle-coated mesoporous silica nanoparticle for enhanced fluorescent imaging and pH-responsive drug supply. Chem Eng J. 2015;279:851–60.

    CAS 

    Google Scholar
     

  • Jin R, Liu Z, Bai Y, Zhou Y, Gooding JJ, Chen X. Core-satellite mesoporous silica-gold nanotheranostics for organic stimuli triggered multimodal most cancers remedy. Adv Func Mater. 2018;28:1801961.


    Google Scholar
     

  • Lei Q, Wang SB, Hu JJ, Lin YX, Zhu CH, Rong L, Zhang XZ. Stimuli-responsive “Cluster Bomb” for programmed tumor remedy. ACS Nano. 2017;11:7201–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Lin H, Zhang G, Si Y, Yang H, Bai G, Yang C, Zhong Ok, Cai D, Wu Z, et al. Efficient pH-activated theranostic platform for synchronous magnetic resonance imaging analysis and chemotherapy. ACS Appl Mater Interfaces. 2018;10:31114–23.

    CAS 
    PubMed 

    Google Scholar
     

  • He H, Meng S, Li H, Yang Q, Xu Z, Chen X, Solar Z, Jiang B, Li C. Nanoplatform primarily based on GSH-responsive mesoporous silica nanoparticles for most cancers remedy and mitochondrial focused imaging. Microchim Acta. 2021;188:154.

    CAS 

    Google Scholar
     

  • Fei W, Chen D, Tang H, Li C, Zheng W, Chen F, Track Q, Zhao Y, Zou Y, Zheng C. Focused GSH-exhausting and hydroxyl radical self-producing manganese–silica nanomissiles for MRI guided ferroptotic most cancers remedy. Nanoscale. 2020;12:16738–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Wang H, Shen Y, Solar Y, Zhou J, Chen J. Glycosaminoglycans immobilized core-shell gold mesoporous silica nanoparticles for synergetic chemo-photothermal remedy of most cancers cells. Mater Lett. 2022;308:131113.

    CAS 

    Google Scholar
     

  • Miao Y, Feng Y, Bai J, Liu Z, Zhao X. Optimized mesoporous silica nanoparticle-based drug supply system with detachable manganese oxide gatekeeper for managed supply of doxorubicin. J Colloid Interface Sci. 2021;592:227–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Z, Jia Z, Qu C, Dai R, Qin Y, Rong S, Liu Y, Cheng Z, Zhang R. Biodegradable silica-based nanotheranostics for exact MRI/NIR-II fluorescence imaging and self-reinforcing antitumor remedy. Small. 2021;17:2006508.

    CAS 

    Google Scholar
     

  • Huang C, Ding S, Jiang W, Wang F-B. Glutathione-depleting nanoplatelets for enhanced sonodynamic most cancers remedy. Nanoscale. 2021;13:4512–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Lv Y, Cao Y, Li P, Liu J, Chen H, Hu W, Zhang L. Ultrasound-triggered destruction of folate-functionalized mesoporous silica nanoparticle-loaded microbubble for focused tumor remedy. Adv Healthc Mater. 2017;6:1700354.


    Google Scholar
     

  • Paris JL, Villaverde G, Cabañas MV, Manzano M, Vallet-Regí M. From proof-of-concept materials to PEGylated and modularly focused ultrasound-responsive mesoporous silica nanoparticles. J Mater Chem B. 2018;6:2785–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng C-A, Chen W, Zhang L, Wu HH, Zink JI. A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity centered ultrasound-stimulated cargo supply with controllable location, time, and dose. J Am Chem Soc. 2019;141:17670–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng C-A, Chen W, Zhang L, Wu HH, Zink JI. Magnetic resonance imaging of high-intensity centered ultrasound-stimulated drug launch from a self-reporting core@shell nanoparticle platform. Chem Commun. 2020;56:10297–300.

    CAS 

    Google Scholar
     

  • Guisasola E, Asín L, Beola L, de la Fuente JM, Baeza A, Vallet-Regí M. Past conventional hyperthermia in vivo most cancers remedy with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces. 2018;10:12518–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Wang YS, Chang ZM, Li L, Zhang Y, Lu MM, Zheng X, Li MQ, Shao D, Li J, et al. Berberine-loaded Janus nanocarriers for magnetic field-enhanced remedy in opposition to hepatocellular carcinoma. Chem Biol Drug Des. 2017;89:464–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Rühle B, Datz S, Argyo C, Bein T, Zink JI. A molecular nanocap activated by superparamagnetic heating for externally stimulated cargo launch. Chem Commun. 2016;52:1843–6.


    Google Scholar
     

  • Thomas CR, Ferris DP, Lee J-H, Choi E, Cho MH, Kim ES, Stoddart JF, Shin J-S, Cheon J, Zink JI. Noninvasive remote-controlled launch of drug molecules in vitro utilizing magnetic actuation of mechanized nanoparticles. J Am Chem Soc. 2010;132:10623–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Xiao Y, Mao Ok, Qin X, Zhang Y, Li D, Zhang Y, Li J, Wan H, He S. Thermoresponsive polymer-encapsulated hole mesoporous silica nanoparticles and their utility in insecticide supply. Chem Eng J. 2020;383:123169.

    CAS 

    Google Scholar
     

  • Samadzadeh S, Babazadeh M, Zarghami N, Pilehvar-Soltanahmadi Y, Mousazadeh H. An implantable sensible hyperthermia nanofiber with switchable, managed and sustained drug launch: Doable utility in prevention of most cancers native recurrence. Mater Sci Engi C. 2021;118:111384.

    CAS 

    Google Scholar
     

  • Ribeiro T, Coutinho E, Rodrigues AS, Baleizão C, Farinha JPS. Hybrid mesoporous silica nanocarriers with thermovalve-regulated managed launch. Nanoscale. 2017;9:13485–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Peng SW, He YY, Er M, Sheng YZ, Gu YQ, Chen HY. Biocompatible CuS-based nanoplatforms for environment friendly photothermal remedy and chemotherapy in vivo. Biomater Sci. 2017;5:475–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Chen F, Huang N, Li J, Wu C, Tan B, Liu Y, Li L, Yang C, Shao D, Liao J. Close to-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal remedy of oral most cancers. Nanoscale. 2021;13:17168–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu HL, Yang Y, Wang AH, Han MJ, Cui W, Li JB. Hyperbranched polyglycerol-doped mesoporous silica nanoparticles for one- and two-photon activated photodynamic remedy. Adv Func Mater. 2016;26:2561–70.

    CAS 

    Google Scholar
     

  • Cheng YJ, Qin SY, Ma YH, Chen XS, Zhang AQ, Zhang XZ. Tremendous-pH-sensitive mesoporous silica nanoparticle-based drug supply system for efficient mixture most cancers remedy. ACS Biomater Sci Eng. 2019;5:1878–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao D, Jia HZ, Zhang J, Liu CW, Zhuo RX, Zhang XZ. A dual-responsive mesoporous silica nanoparticle for tumor-triggered concentrating on drug supply. Small. 2014;10:591–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Lei W, Solar CS, Jiang TY, Gao YK, Yang Y, Zhao QF, Wang SL. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug supply and mixed chemo-photothermal remedy. Mater Sci Engi C. 2019;105:110103.

    CAS 

    Google Scholar
     

  • Chen Y, Yin Q, Ji XF, Zhang SJ, Chen HR, Zheng YY, Solar Y, Qu HY, Wang Z, Li YP, et al. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in most cancers cells. Biomaterials. 2012;33:7126–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Peng YK, Lui CNP, Chen YW, Chou SW, Raine E, Chou PT, Yung KKL, Tsang SCE. Engineering of single magnetic particle service for dwelling mind cell imaging: a tunable T-1-/T-2-/dual-modal distinction agent for magnetic resonance imaging utility. Chem Mater. 2017;29:4411–7.

    CAS 

    Google Scholar
     

  • Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Track IC, Park SP, Moon WK, Hyeon T. Uniform mesoporous dye-doped silica nanoparticles adorned with a number of magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug supply. J Am Chem Soc. 2010;132:552–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD. A sensible tumor microenvironment responsive nanoplatform primarily based on upconversion nanoparticles for environment friendly multimodal imaging guided remedy. Biomater Sci. 2019;7:951–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, Bremner DH, Niu S, Shi M, Wang H, Tang R, Zhu LM. Chemodrug-gated biodegradable hole mesoporous organosilica nanotheranostics for multimodal imaging-guided low-temperature photothermal remedy/chemotherapy of most cancers. ACS Appl Mater Interfaces. 2018;10:42115–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Wang Ok, Tian B, Revia R, Mu Q, Jeon M, Chang FC, Zhang M. Preloading of hydrophobic anticancer drug into multifunctional nanocarrier for multimodal imaging, NIR-responsive drug launch, and synergistic remedy. Small. 2016;12:6388–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK. Extremely hydrophilic luminescent magnetic mesoporous carbon nanospheres for managed launch of anticancer drug and multimodal imaging. Langmuir. 2016;32:1611–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Sahu S, Sinha N, Bhutia SK, Majhi M, Mohapatra S. Luminescent magnetic hole mesoporous silica nanotheranostics for camptothecin supply and multimodal imaging. J Mater Chem B. 2014;2:3799–808.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen SZ, Yang YQ, Li HD, Zhou X, Liu ML. pH-Triggered Au-fluorescent mesoporous silica nanoparticles for F-19 MR/fluorescent multimodal most cancers mobile imaging. Chem Commun. 2014;50:283–5.

    CAS 

    Google Scholar
     

  • Taylor-Pashow KML, Della Rocca J, Lin WB. Mesoporous silica nanoparticles with co-condensed gadolinium chelates for multimodal imaging. Nanomaterials. 2012;2:1–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan YW, Zhang L, Zeng LY, Ren WZ, Xiao XS, Zhang JC, Zhang LL, Li AG, Lu GM, Wu AG. Gd-based upconversion nanocarriers with yolk-shell construction for dual-modal imaging and enhanced chemotherapy to beat multidrug resistance in breast most cancers. Nanoscale. 2016;8:878–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao A, Zhang D, Yin X-B. Close to infrared fluorescence-magnetic resonance dual-modal imaging with Cy5-labeled, Gd–Al co-doped mesoporous silica nanoparticles. Anal Strategies. 2016;8:214–21.

    CAS 

    Google Scholar
     

  • Yang D, Yang GX, Wang XM, Lv RC, Gai SL, He F, Gulzar A, Yang PP. Y2O3:Yb, Er@mSiO(2)-CuxS double-shelled hole spheres for enhanced chemo-/photothermal anti-cancer remedy and dual-modal imaging. Nanoscale. 2015;7:12180–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu XT, Li L, Zhang LY, Wang TT, Wang CG, Su ZM. Multifunctional spherical gold nanocluster combination@polyacrylic acid@mesoporous silica nanoparticles for mixed most cancers dual-modal imaging and chemo-therapy. J Mater Chem B. 2015;3:2421–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Li CX, Yang DM, Ma PA, Chen YY, Wu Y, Hou ZY, Dai YL, Zhao JH, Sui CP, Lin J. Multifunctional upconversion mesoporous silica nanostructures for twin modal imaging and in vivo drug supply. Small. 2013;9:4150–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Hou Z, Ma P, Zhang X, Li C, Cheng Z, Dai Y, Lian J, Lin J. Multifunctional NaYF4:Yb/Er/Gd nanocrystal adorned SiO2 nanotubes for anti-cancer drug supply and twin modal imaging. RSC Adv. 2013;3:8517–26.

    CAS 

    Google Scholar
     

  • Wei QL, Chen Y, Ma XB, Ji JF, Qiao Y, Zhou B, Ma F, Ling DS, Zhang H, Tian M, et al. Excessive-efficient clearable nanoparticles for multi-modal imaging and image-guided most cancers remedy. Adv Funct Mater. 2018;28:1704634.


    Google Scholar
     

  • Zhang X, Xi Z, Machuki JO, Luo J, Yang D, Li J, Cai W, Yang Y, Zhang L, Tian J, et al. Gold cube-in-cube primarily based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for exact chemo-phototherapy and multimodal imaging. ACS Nano. 2019;13:5306–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Fang S, Lin J, Li C, Huang P, Hou W, Zhang C, Liu J, Huang S, Luo Y, Fan W, et al. Twin-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic remedy. Small. 2017;13:1602580.


    Google Scholar
     

  • Hembury M, Chiappini C, Bertazzo S, Kalber TL, Drisko GL, Ogunlade O, Walker-Samuel S, Krishna KS, Jumeaux C, Beard P, et al. Gold-silica quantum rattles for multimodal imaging and remedy. Proc Natl Acad Sci USA. 2015;112:1959–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv R, Yang P, He F, Gai S, Li C, Dai Y, Yang G, Lin J. A yolk-like multifunctional platform for multimodal imaging and synergistic remedy triggered by a single near-infrared gentle. ACS Nano. 2015;9:1630–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Kempen PJ, Greasley S, Parker KA, Campbell JL, Chang H-Y, Jones JR, Sinclair R, Gambhir SS, Jokerst JV. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug supply and ultrasound/magnetic resonance imaging of stem cells. Theranostics. 2015;5:631–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XY, Chen RT, Xu SH, Liu HL, Hu Y. Thermoresponsive habits and rheology of SiO2-hyaluronic acid/poly(N-isopropylacrylamide) (NaHA/PNIPAm) core-shell structured microparticles. J Chem Technol Biotechnol. 2015;90:407–14.

    CAS 

    Google Scholar
     

  • Kanniyappan H, Venkatesan M, Panji J, Ramasamy M, Muthuvijayan V. Evaluating the inherent osteogenic and angiogenic potential of mesoporous silica nanoparticles to reinforce vascularized bone tissue formation. Microporous Mesoporous Mater. 2021;311:110687.

    CAS 

    Google Scholar
     

  • Kumari S, Bargel H, Scheibel T. Recombinant spider silk-silica hybrid scaffolds with drug-releasing properties for tissue engineering functions. Macromol Fast Commun. 2020;41:1900426.

    CAS 

    Google Scholar
     

  • Daryasari MP, Telgerd MD, Karami MH, Zandi-Karimi A, Akbarijavar H, Khoobi M, Seyedjafari E, Birhanu G, Khosravian P, SadatMahdavi F. Poly-l-lactic acid scaffold integrated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone supply. Artif Cells Nanomed Biotechnol. 2019;47:4020–9.


    Google Scholar
     

  • Shi MC, Zhou YH, Shao J, Chen ZT, Track BT, Chang J, Wu CT, Xiao Y. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and purposeful drug from mesoporous silica nanospheres. Acta Biomater. 2015;21:178–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Gan Q, Zhu JY, Yuan Y, Liu HL, Qian JC, Lib YS, Liu CS. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J Mater Chem B. 2015;3:2056–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi MC, Xia LG, Chen ZT, Lv F, Zhu HY, Wei F, Han SW, Chang J, Xiao Y, Wu CT. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials. 2017;144:176–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Luo XJ, Yang HY, Niu LN, Mao J, Huang C, Pashley DH, Tay FR. Translation of a solution-based biomineralization idea right into a carrier-based supply system by way of the usage of expanded-pore mesoporous silica. Acta Biomater. 2016;31:378–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Zippusch S, Besecke KFW, Helms F, Klingenberg M, Lyons A, Behrens P, Haverich A, Wilhelmi M, Ehlert N, Boer U. Chemically induced hypoxia by dimethyloxalylglycine (DMOG)-loaded nanoporous silica nanoparticles helps endothelial tube formation by sustained VEGF launch from adipose tissue-derived stem cells. Regen Biomater. 2021;8:rbab039.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei C, Cao YX, Hosseinpour S, Gao F, Liu JY, Fu JY, Staples R, Ivanovski S, Xu C. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles primarily based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 2021;14:770–7.

    CAS 

    Google Scholar
     

  • Monavari M, Homaeigohar S, Fuentes-Chandia M, Nawaz Q, Monavari M, Venkatraman A, Boccaccini AR. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering. Mater Sci Eng C. 2021;131:112470.

    CAS 

    Google Scholar
     

  • Tang Y, Luo KY, Chen Y, Chen YQ, Zhou R, Chen C, Tan JL, Deng MY, Dai QJ, Yu XK, et al. Phosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering. Bioactive Mater. 2021;6:2039–57.

    CAS 

    Google Scholar
     

  • Yu YF, Yu XF, Tian DL, Yu AX, Wan Y. Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with sturdy and elastic traits for bone tissue engineering. Int J Biol Macromol. 2021;182:1746–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Huang C, Chang J. Ca-Doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties. J Mater Chem B. 2018;6:477–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Tasia WD, Lei C, Cao YX, Ye QS, He Y, Xu C. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale. 2020;12:2328–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Chang ZM, Wang Z, Lu MM, Shao D, Yue J, Yang D, Li MQ, Dong WF. Janus silver mesoporous silica nanobullets with synergistic antibacterial features. Colloids Surf, B. 2017;157:199–206.

    CAS 

    Google Scholar
     

  • Yu QL, Deng T, Lin FC, Zhang B, Zink JI. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano. 2020;14:5926–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen HM, Li YL, Wu H, Solar NR, Deng CH. Good hydrophilic modification of magnetic mesoporous silica with zwitterionic L-Cysteine for endogenous glycopeptides recognition. ACS Maintain Chem Eng. 2019;7:2844–51.

    CAS 

    Google Scholar
     

  • Fang XW, Yao JZ, Hu XF, Li Y, Yan GQ, Wu H, Deng CH. Magnetic mesoporous silica of loading copper metallic ions for enrichment and LC-MS/MS evaluation of salivary endogenous peptides. Talanta. 2020;207:120313.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu XF, Li YL, Miao AZ, Deng CM. Twin metallic cations coated magnetic mesoporous silica probe for extremely selective seize of endogenous phosphopeptides in organic samples. Microchim Acta. 2020;187:400.

    CAS 

    Google Scholar
     

  • Li HR, Wu XQ, Yang BX, Li J, Xu L, Liu HZ, Li SM, Xu JH, Yang MS, Wei MJ. Analysis of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: construction, wettability, degradation, biocompatibility and mind distribution. Mater Sci Eng, C. 2019;94:453–64.

    CAS 

    Google Scholar
     

  • Li M, Lv J, Wang SL, Wang J, Lin YL. Expanded mesoporous silica-encapsulated ultrasmall Pt nanoclusters as synthetic enzymes for monitoring hydrogen peroxide secretion from stay cells. Anal Chim Acta. 2020;1104:180–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Ray S, Biswas R, Banerjee R, Biswas P. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine. Nanoscale Adv. 2020;2:734–45.

    CAS 

    Google Scholar
     

  • Kalantari M, Ghosh T, Liu Y, Zhang J, Zou J, Lei C, Yu CZ. Extremely thiolated dendritic mesoporous silica nanoparticles with high-content gold as nanozymes: the nano-gold dimension issues. ACS Appl Mater Interfaces. 2019;11:13264–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Dong SM, Dong YS, Jia T, Liu SK, Liu J, Yang D, He F, Gai SL, Yang PP, Lin J. GSH-depleted nanozymes with hyperthermia-enhanced twin enzyme-mimic actions for tumor nanocatalytic remedy. Adv Mater. 2020;32:e2002439.

    PubMed 

    Google Scholar
     

  • Jimenez-Falcao S, Torres D, Martinez-Ruiz P, Vilela D, Martinez-Manez R, Villalonga R. Sucrose-responsive intercommunicated janus nanoparticles community. Nanomaterials. 2021;11:2492.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YZ, Zhou HRH, Li TT, Jian XX, Gao ZD, Track YY. Designing ultrafine PdCo alloys in mesoporous silica nanospheres with peroxidase-like exercise and catalase-like exercise. J Mater Chem B. 2021;9:2016–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Li AY, Lengthy L, Liu FS, Liu JB, Wu XC, Ji YL. Antigen-labeled mesoporous silica-coated Au-core Pt-shell nanostructure: a novel nanoprobe for extremely environment friendly virus analysis. J Biol Eng. 2019;13:87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Li W, Duan SD, Peng JX, Liu JQ, Ma WJ, Wang HZ, He XX, Wang KM. Mesoporous silica containers and programmed catalytic hairpin meeting/hybridization chain response primarily based electrochemical sensing platform for MicroRNA ultrasensitive detection with low background. Anal Chem. 2019;91:10672–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Gu TX, Li ZY, Ren ZH, Li X, Han GR. Uncommon-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for a number of microRNA detection. Chem Eng J. 2019;374:863–9.

    CAS 

    Google Scholar
     

  • Tobias C, Climent E, Gawlitza Ok, Rurack Ok. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising device for multiplexed bioanalytical assays. ACS Appl Mater Interfaces. 2021;13:207–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Zhang QY, Yao HQ, Wang WJ, Zhang JR, Zhu JJ. Quantitative detection and imaging of a number of organic molecules in dwelling cells for cell screening. ACS Sensors. 2020;5:1149–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Shen XT, Xu W, Guo JB, Ouyang J, Na N. Chemiluminescence resonance power transfer-based mesoporous silica nanosensors for the detection of miRNA. ACS Sensors. 2020;5:2800–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Gong L, Liu SM, Track Y, Xie SW, Guo ZY, Xu JX, Xu LJ. A flexible luminescent resonance power switch (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. J Mater Chem B. 2020;8:5952–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Ge SJ, Ran ML, Mao Y, Solar Y, Zhou XY, Li L, Cao XW. A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase exercise primarily based on a high-density “sizzling spot” SERS substrate and rolling circle amplification technique. Analyst. 2021;146:5326–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian JK, Zhao ML, Track YM, Zhong X, Yuan R, Zhuo Y. MicroRNA-triggered deconstruction of field-free spherical nucleic acid as an electrochemiluminescence biosensing change. Anal Chem. 2021;93:13928–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Hashkavayi AB, Cha BS, Hwang SH, Kim J, Park KS. Extremely delicate electrochemical detection of circulating EpCAM-positive tumor cells utilizing a twin sign amplification technique. Sensors Actuators B-Chemical. 2021;343:130087.


    Google Scholar
     

  • Wang T, Hu B, Huang JB, Li QF, Wang ZL. Luminescent mesoporous hybrid supplies grafted with lanthanide complexes synthesized by Michael-like addition response. J Porous Mater. 2019;26:567–74.

    CAS 

    Google Scholar
     

  • Shao GZ, Zhao Y, Yu YX, Yang HS, Liu XD, Zhang YJ, Xiang WD, Liang XJ. Shiny emission and excessive photoluminescence CsPb2Br 5 NCs encapsulated in mesoporous silica with ultrahigh stability and wonderful optical properties for white light-emitting diodes. J Mater Chem C. 2019;7:13585–93.

    CAS 

    Google Scholar
     

  • Qiao Y, Li YL, Li WX, Bao JR, Zheng YS, Feng L, Ma YY, Yang KS, Wu AP, Bai H, Yang YJ. Preparation and luminescence properties of core-shell construction composites SiO2@ANA-Si-Eu and SiO2@ANA-Si-Eu-L and core-shell-shell construction composites SiO2@ANA-Si-Eu@SiO2 and SiO2@ANA-Si-Eu-L@SiO2. New J Chem. 2020;44:1107–16.

    CAS 

    Google Scholar
     

  • Zhan ZJ, Ma L, Li JF, Zhang YQ, Liu CX, Zhang RR, Zeng XY, Cheng CF, Cheng C. Two-photon pumped spaser primarily based on the CdS/ZnS core/shell quantum dot-mesoporous silica-metal construction. Aip Adv. 2020;10:045312.

    CAS 

    Google Scholar
     

  • Lan XY, Ren H, Yang X, Wang J, Gao PL, Zhang Y. A facile microwave-assisted synthesis of extremely crystalline crimson carbon dots by adjusting the response solvent for white light-emitting diodes. Nanotechnology. 2020;31:215704.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi WB, Zhang X, Matras-Postolek Ok, Yang P. Mesoporous silica-coated CsPbX3 nanocrystals with excessive stability and ion-exchange resistance for shiny white-emitting shows. ACS Appl Nano Mater. 2021;4:9391–400.

    CAS 

    Google Scholar
     

  • Yu H, Zhang H, Yang W, Feng J, Fan W, Track S. Luminescent character of mesoporous silica with Er2O3 composite supplies. Microporous Mesoporous Mater. 2013;170:113–22.

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.