Nanocarrier most cancers therapeutics with practical stimuli-responsive mechanisms | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71:209–49.

    Article 

    Google Scholar
     

  • Iannazzo D, Pistone A, Celesti C, Triolo C, Patané S, Giofré SV, et al. A wise nanovector for most cancers focused drug supply based mostly on graphene quantum dots. Nanomaterials. 2019;9:1–17.


    Google Scholar
     

  • Sanadgol N, Wackerlig J. Developments of sensible drug-delivery programs based mostly on magnetic molecularly imprinted polymers for focused most cancers remedy: a brief evaluate. Pharmaceutics. 2020;12:1–31.


    Google Scholar
     

  • Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug supply in most cancers remedy and its position in overcoming drug resistance. Entrance Mol Biosci. 2020;7:1–14.


    Google Scholar
     

  • Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Focused supply to tumors: Multidirectional methods to enhance therapy effectivity. Cancers. 2019. https://doi.org/10.3390/cancers11010068.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Ding J, Chen J, Gao L, Jiang Z, Zhang Y, Li M, et al. Engineered nanomedicines with enhanced tumor penetration. Nano Immediately. 2019;29:100800.

    CAS 

    Google Scholar
     

  • Kreuter J. Nanoparticles-a historic perspective. Int J Pharm. 2007;331:1–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanna SC, Jecklin T, Speiser P. Bead polymerization approach for sustained-release dosage kind. J Pharm Sci. 1970;59:614–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Wang Z, Gu Z. Bioinspired and Biomimetic Nanomedicines. Acc Chem Res. 2019;52:1255–64. https://doi.org/10.1021/acs.accounts.9b00079.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Patil Y, Shmeeda H, Amitay Y, Ohana P, Kumar S, Gabizon A. Concentrating on of folate-conjugated liposomes with co-entrapped medicine to prostate most cancers cells through prostate-specific membrane antigen (PSMA). Nanomed Nanotechnol Biol Med. 2018;14:1407–16. https://doi.org/10.1016/j.nano.2018.04.011.

    CAS 
    Article 

    Google Scholar
     

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug supply carriers for most cancers remedy. Biomed Res Int. 2014. https://doi.org/10.1155/2014/180549.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, et al. Polymeric blended micelles as nanomedicines: achievements and views. Eur J Pharm Biopharm. 2017;113:211–28. https://doi.org/10.1016/j.ejpb.2016.12.019.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Masood F. Polymeric nanoparticles for focused drug supply system for most cancers remedy. Mater Sci Eng C. 2016;60:569–78. https://doi.org/10.1016/j.msec.2015.11.067.

    CAS 
    Article 

    Google Scholar
     

  • Xin Y, Yin M, Zhao L, Meng F, Luo L. Current progress on nanoparticle-based drug supply programs for most cancers remedy. Most cancers Biol Med. 2017;14:228–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahato R. Nanoemulsion as focused drug supply system for most cancers therapeutics. J Pharm Sci Pharmacol. 2017;3:83–97.


    Google Scholar
     

  • Narayanaswamy R, Torchilin VP. Hydrogels and their purposes in focused drug supply. Molecules. 2019. https://doi.org/10.3390/molecules24030603.

    CAS 
    Article 

    Google Scholar
     

  • Deshpande PP, Biswas S, Torchilin VP. Present traits in using liposomes for tumor focusing on. Nanomedicine. 2013;8:1509–28.

    CAS 

    Google Scholar
     

  • Wang G, Gao S, Tian R, Miller-Kleinhenz J, Qin Z, Liu T, et al. Theranostic hyaluronic acid-iron micellar nanoparticles for magnetic-field-enhanced in vivo most cancers chemotherapy. ChemMedChem. 2018;13:78–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and focused drug supply in most cancers remedy. Immunol Lett. 2017;190:64–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Chen X, Cao J, Gao H. Overcoming the organic boundaries within the tumor microenvironment for enhancing drug supply and efficacy. J Mater Chem B. 2020;8:6765–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Cao Z, Liu R, Liu L, Li H, Li X, et al. AuNPs as an necessary inorganic nanoparticle utilized in drug service programs. Artif Cells Nanomed Biotechnol. 2019;47:4222–33. https://doi.org/10.1080/21691401.2019.1687501.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Nejati Okay, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical purposes of functionalized gold nanoparticles: a evaluate. J Clust Sci. 2021. https://doi.org/10.1007/s10876-020-01955-9.

    Article 

    Google Scholar
     

  • Zhao W, Wang H, Wang H, Han Y, Zheng Z, Liu X, et al. Mild-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug supply and lubrication enhancement for the therapy of osteoarthritis. Nanoscale. 2021;13:6394–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan Hardy Wai Hong (New Taipei Metropolis), Mou Chung-Yuan (Taipei Metropolis), Wu Cheng-Hsun (Hsinchu Metropolis), Wu Si-Han (Taoyuan Metropolis), Chen Yi-Ping Chen (Keelung Metropolis) Zhang Rong-Lin (Pingtung Metropolis). Drug supply by pore-modified mesoporous silica nanoparticles. 2021.01.20 https://patents.justia.com/patent/20210015757#historical past.

  • Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a complete evaluate on synthesis and up to date advances. Pharmaceutics. 2018;10:1–49.


    Google Scholar
     

  • Ali HR, Selim SA, Aili D. Results of macrophage polarization on gold nanoparticle-assisted plasmonic photothermal remedy. RSC Adv. 2021;11:25047–56. https://doi.org/10.1039/D1RA03671H.

    CAS 

    Google Scholar
     

  • Hassanen EI, Korany RMS, Bakeer AM. Cisplatin-conjugated gold nanoparticles-based drug supply system for focusing on hepatic tumors. J Biochem Mol Toxicol. 2021. https://doi.org/10.1002/jbt.22722.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Sonavane G, Tomoda Okay, Sano A, Ohshima H, Terada H, Makino Okay. In vitro permeation of gold nanoparticles by rat pores and skin and rat gut: impact of particle measurement. Colloids Surfaces B Biointerfaces. 2008;65:1–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao Y, Chan HF, Shi B, Li M, Leong KW. Mild: a magical software for managed drug supply. Adv Funct Mater. 2020;30:1–28.


    Google Scholar
     

  • Chaudhari R, Patel P, Meghani N, Nasra S, Kumar A. Fabrication of methotrexate-loaded gold nanoconjugates and its enhanced anticancer exercise in breast most cancers. 3 Biotech. 2021;11:1–13. https://doi.org/10.1007/s13205-021-02718-7.

    Article 

    Google Scholar
     

  • Li R, Wu R, Zhao L, Wu M, Yang L, Zou H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano. 2010;4:1399–408.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyra KM, Kaminari A, Panagiotaki KN, Spyrou Okay, Papageorgiou S, Sakellis E, et al. Multi-walled carbon nanotubes embellished with guanidinylated dendritic molecular transporters: an environment friendly platform for the selective anticancer exercise of doxorubicin. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13060858.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kim SW, Kyung Lee Y, Yeon Lee J, Hee Hong J, Khang D. PEGylated anticancer-carbon nanotubes complicated focusing on mitochondria of lung most cancers cells. Nanotechnology. 2017. https://doi.org/10.1088/1361-6528/aa8c31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li L, Gu W, Chen J, Chen W, Xu ZP. Co-delivery of siRNAs and anti-cancer medicine utilizing layered double hydroxide nanoparticles. Biomaterials. 2014;35:3331–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senapati S, Thakur R, Verma SP, Duggal S, Mishra DP, Das P, et al. Layered double hydroxides as efficient service for anticancer medicine and tailoring of launch price by interlayer anions. J Management Launch. 2016;224:186–98. https://doi.org/10.1016/j.jconrel.2016.01.016.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Maier-Hauff Okay, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and security of intratumoral thermotherapy utilizing magnetic iron-oxide nanoparticles mixed with exterior beam radiotherapy on sufferers with recurrent glioblastoma multiforme. J Neurooncol. 2011;103:317–24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiremath CG, Heggnnavar GB, Kariduraganavar MY, Hiremath MB. Co-delivery of paclitaxel and curcumin to foliate optimistic most cancers cells utilizing Pluronic-coated iron oxide nanoparticles. Prog Biomater. 2019;8:155–68. https://doi.org/10.1007/s40204-019-0118-5.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Javid A, Ahmadian S, Saboury AA, Kalantar SM, Rezaei-Zarchi S. Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin supply: synthesis and anticancer impact towards human ovarian most cancers cells. Chem Biol Drug Des. 2013;82:296–306.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Bu W, Pan L, Shi J. NIR-triggered anticancer drug supply by upconverting nanoparticles with built-in azobenzene-modified mesoporous silica. Angew Chemie. 2013;125:4471–5.


    Google Scholar
     

  • Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for focused drug supply. Chem A Eur J. 2013;19:1778–83. https://doi.org/10.1002/chem.201202038.

    CAS 
    Article 

    Google Scholar
     

  • Campbell E, Hasan MT, Gonzalez-Rodriguez R, Actually T, Lee BH, Inexperienced KN, et al. Graphene quantum dot formulation for most cancers imaging and redox-based drug supply. Nanomed Nanotechnol Biol Med. 2021. https://doi.org/10.1016/j.nano.2021.102408.

    Article 

    Google Scholar
     

  • Shang Y, Wang Q, Wu B, Zhao Q, Li J, Huang X, et al. Platelet-membrane-camouflaged black phosphorus quantum dots improve anticancer impact mediated by apoptosis and autophagy. ACS Appl Mater Interfaces. 2019;11:28254–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatimah I, Fadillah G, Yudha SP. Synthesis of iron-based magnetic nanocomposites: a evaluate. Arab J Chem. 2021;14:103301. https://doi.org/10.1016/j.arabjc.2021.103301.

    CAS 
    Article 

    Google Scholar
     

  • Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo supply, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576–607.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rayegan A, Allafchian A, Abdolhosseini Sarsari I, Kameli P. Synthesis and characterization of basil seed mucilage coated Fe3O4 magnetic nanoparticles as a drug service for the managed supply of cephalexin. Int J Biol Macromol. 2018;113:317–28. https://doi.org/10.1016/j.ijbiomac.2018.02.134.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and organic purposes. Chem Rev. 2008;108:2064–110. https://doi.org/10.1021/cr068445e.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yang J, Luo Y, Xu Y, Li J, Zhang Z, Wang H, et al. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for focused tumor MR imaging. ACS Appl Mater Interfaces. 2015;7:5420–8. https://doi.org/10.1021/am508983n.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Debnath SK, Srivastava R. Drug supply with carbon-based nanomaterials as versatile nanocarriers: progress and prospects. Entrance Nanotechnol. 2021;3:1–22.


    Google Scholar
     

  • Solar J, Ogunnaike EA, Jiang X, Chen Z. Nanotechnology lights up the antitumor efficiency by combining chemotherapy with siRNA. J Mater Chem B. 2021;9:7302–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for focused most cancers nanotherapy: latest traits and future prospects. J Drug Goal. 2021;29:716–41. https://doi.org/10.1080/1061186X.2021.1886301.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Figarol A, Pourchez J, Boudard D, Forest V, Tulliani JM, Lecompte JP, et al. Organic response to purification and acid functionalization of carbon nanotubes. J Nanoparticle Res. 2014. https://doi.org/10.1007/s11051-014-2507-y.

    Article 

    Google Scholar
     

  • Jha R, Singh A, Sharma PK, Fuloria NK. Good carbon nanotubes for drug supply system: a complete research. J Drug Deliv Sci Technol. 2020;58:101811. https://doi.org/10.1016/j.jddst.2020.101811.

    CAS 
    Article 

    Google Scholar
     

  • Molaei MJ. Carbon quantum dots and their biomedical and therapeutic purposes: a evaluate. RSC Adv. 2019;9:6460–81.

    CAS 

    Google Scholar
     

  • Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced supply of curcumin focusing on to breast most cancers. Mater Sci Eng C. 2021;121:111809. https://doi.org/10.1016/j.msec.2020.111809.

    CAS 
    Article 

    Google Scholar
     

  • Gidwani B, Sahu V, Shukla SS, Pandey R, Joshi V, Jain VK, et al. Quantum dots: prospectives, toxicity, advances and purposes. J Drug Deliv Sci Technol. 2021;61:102308. https://doi.org/10.1016/j.jddst.2020.102308.

    CAS 
    Article 

    Google Scholar
     

  • Zhao MX, Zhu BJ. The analysis and purposes of quantum dots as nano-carriers for focused drug supply and most cancers remedy. Nanoscale Res Lett. 2016. https://doi.org/10.1186/s11671-016-1394-9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Chen H, Liu T, Su Z, Shang L, Wei G. 2D transition metallic dichalcogenide nanosheets for picture/thermo-based tumor imaging and remedy. Nanoscale Horizons. 2018;3:74–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang X, Du A, Kou L. Gasoline sensing and capturing based mostly on two-dimensional layered supplies: overview from theoretical perspective. WIREs Comput Mol Sci. 2018. https://doi.org/10.1002/wcms.1361.

    Article 

    Google Scholar
     

  • Jin J, Guo M, Liu J, Liu J, Zhou H, Li J, et al. Graphdiyne nanosheet-based drug supply platform for photothermal/chemotherapy mixture therapy of most cancers. ACS Appl Mater Interfaces. 2018;10:8436–42. https://doi.org/10.1021/acsami.7b17219.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Chen H, Jia Y, Zhang W, Zhao H, Fan W, et al. A two-dimensional fingerprint nanoprobe based mostly on black phosphorus for bio-SERS evaluation and chemo-photothermal remedy. Nanoscale. 2018;10:18795–804.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng L, Mei X, He J, Xu J, Zhang W, Liang R, et al. Monolayer nanosheets with a particularly excessive drug loading towards managed supply and most cancers theranostics. Adv Mater. 2018;30:1707389. https://doi.org/10.1002/adma.201707389.

    CAS 
    Article 

    Google Scholar
     

  • Yu J, Lin Y-H, Yang L, Huang C-C, Chen L, Wang W-C, et al. Improved anticancer photothermal remedy utilizing the bystander impact enhanced by antiarrhythmic peptide conjugated dopamine-modified decreased graphene oxide nanocomposite. Adv Healthc Mater. 2017;6:1600804. https://doi.org/10.1002/adhm.201600804.

    CAS 
    Article 

    Google Scholar
     

  • Xing C, Chen S, Qiu M, Liang X, Liu Q, Zou Q, et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal brokers for efficient most cancers remedy. Adv Healthc Mater. 2018;7:1701510. https://doi.org/10.1002/adhm.201701510.

    CAS 
    Article 

    Google Scholar
     

  • Zylberberg C, Matosevic S. Pharmaceutical liposomal drug supply: a evaluate of latest supply programs and a take a look at the regulatory panorama. Drug Deliv. 2016;23:3319–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemière J, Carvalho Okay, Sykes C. Cell-sized liposomes that mimic cell motility and the cell cortex. Strategies Cell Biol. 2015;128:271–85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua S, Wu SY. Using lipid-based nanocarriers for focused ache therapies. Entrance Pharmacol. 2013;4:1–7.


    Google Scholar
     

  • Bolotin EM, Cohen R, Bar LK, Emanuel N, Ninio S, Danilo DL, et al. Ammonium sulfate gradients for environment friendly and secure distant loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res. 1994;4:455–79.


    Google Scholar
     

  • Najlah M, Suliman AS, Tolaymat I, Kurusamy S, Kannappan V, Elhissi AMA, et al. Growth of injectable PEGylated liposome encapsulating disulfiram for colorectal most cancers therapy. Pharmaceutics. 2019;11:1–16.


    Google Scholar
     

  • Ishida T, Okada Y, Kobayashi T, Kiwada H. Growth of pH-sensitive liposomes that effectively retain encapsulated doxorubicin (DXR) in blood. Int J Pharm. 2006;309:94–100.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, et al. Core shell lipid-polymer hybrid nanoparticles with mixed docetaxel and molecular focused remedy for the therapy of metastatic prostate most cancers. Sci Rep. 2017;7:1–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv ship siRNA and miRNA for most cancers remedy. Mol Ther. 2010;18:1650–6. https://doi.org/10.1038/mt.2010.136.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Tang B, Peng Y, Yue Q, Pu Y, Li R, Zhao Y, et al. Design, preparation and analysis of various branched biotin modified liposomes for focusing on breast most cancers. Eur J Med Chem. 2020. https://doi.org/10.1016/j.ejmech.2020.112204.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Li N, Xie X, Hu Y, He H, Fu X, Fang T, et al. Herceptin-conjugated liposomes co-loaded with doxorubicin and simvastatin in focused prostate most cancers remedy. Am J Transl Res. 2019;11:1255–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rommasi F, Esfandiari N. Liposomal nanomedicine: purposes for drug supply in most cancers remedy. Nanoscale Res Lett. 2021. https://doi.org/10.1186/s11671-021-03553-8.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yang B, Tune B, Shankar S, Guller A, Deng W. Current advances in liposome formulations for breast most cancers therapeutics. Cell Mol Life Sci. 2021;78:5225–43. https://doi.org/10.1007/s00018-021-03850-6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Qiu N, Ma Y, Zhao X, An L, Liu J, Li X. Utility of liposome-based drug co-delivery system for the reversal of multidrug resistance in most cancers therapy. J Nat Med Res. 2021;1:1–11.


    Google Scholar
     

  • Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U. Protein based mostly nanostructures for drug supply. J Pharm. 2018;2018:1–18.


    Google Scholar
     

  • Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug supply and most cancers remedy. Most cancers Drug Resist. 2020;3:879–911.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based mostly nanomaterials in drug supply programs: a evaluate. Mater Immediately Chem. 2018;9:43–55.

    CAS 

    Google Scholar
     

  • Hao L, Zhou Q, Piao Y, Zhou Z, Tang J, Shen Y. Albumin-binding prodrugs through reversible iminoboronate forming nanoparticles for most cancers drug supply. J Management Launch. 2021;330:362–71. https://doi.org/10.1016/j.jconrel.2020.12.035.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Rochani AK, Balasubramanian S, Girija AR, Maekawa T, Kaushal G, Sakthi KD. Warmth shock protein 90 (Hsp90)-inhibitor-luminespib-loaded-protein-based nanoformulation for most cancers remedy. Polymers. 2020. https://doi.org/10.3390/polym12081798.

    Article 

    Google Scholar
     

  • Mottaghitalab F, Kiani M, Farokhi M, Kundu SC, Reis RL, Gholami M, et al. Focused supply system based mostly on gemcitabine-loaded silk fibroin nanoparticles for lung most cancers remedy. ACS Appl Mater Interfaces. 2017;9:31600–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu Okay. Current development of gelatin nanoparticles in drug and vaccine supply. Int J Biol Macromol. 2015;81:317–31. https://doi.org/10.1016/j.ijbiomac.2015.08.006.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Pal Okay, Roy S, Parida PK, Dutta A, Bardhan S, Das S, et al. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple detrimental breast most cancers remedy in invitro and invivo mannequin. Mater Sci Eng C. 2019;95:204–16. https://doi.org/10.1016/j.msec.2018.10.071.

    CAS 
    Article 

    Google Scholar
     

  • Pham DT, Saelim N, Tiyaboonchai W. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for most cancers chemotherapy. Colloids Surfaces B Biointerfaces. 2019;181:705–13. https://doi.org/10.1016/j.colsurfb.2019.06.011.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Jithan A, Madhavi Okay, Madhavi M, Prabhakar Okay. Preparation and characterization of albumin nanoparticles encapsulating curcumin meant for the therapy of breast most cancers. Int J Pharm Investig. 2011;1:119.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleh T, Soudi T, Shojaosadati SA. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for focused supply to HER-2 optimistic breast most cancers cells. Int J Biol Macromol. 2019;130:109–16. https://doi.org/10.1016/j.ijbiomac.2019.02.129.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Mathew MS, Vinod Okay, Jayaram PS, Jayasree RS, Joseph Okay. Improved bioavailability of curcumin in gliadin-protected gold quantum cluster for focused supply. ACS Omega. 2019;4:14169–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav HKS, Almokdad AA, Shaluf SIM, Debe MS. Polymer-based nanomaterials for drug-delivery carriers. Nanocarriers Drug Deliv. 2019. https://doi.org/10.1016/B978-0-12-814033-8.00017-5.

    Article 

    Google Scholar
     

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug supply: an perception of the methods for his or her characterization and evaluation in biorelevant situations. J Management Launch. 2021;332:312–36. https://doi.org/10.1016/j.jconrel.2021.02.031.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Part I and pharmacokinetic research of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in sufferers with superior malignancies. Clin Most cancers Res. 2004;10:3708–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic supply. Entrance Bioeng Biotechnol. 2020;8:1–24.

    CAS 

    Google Scholar
     

  • Wang Z, Chen J, Little N, Lu J. Self-assembling prodrug nanotherapeutics for synergistic tumor focused drug supply. Acta Biomater. 2020;111:20–8. https://doi.org/10.1016/j.actbio.2020.05.026.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, et al. latest advances in self-assembled nanoparticles for drug supply. Curr Drug Deliv. 2020;17:279–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou J, Rao L, Yu G, Cook dinner TR, Chen X, Huang F. Supramolecular most cancers nanotheranostics. Chem Soc Rev. 2021;50:2839–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawakami Okay, Ebara M, Izawa H, Sanchez-Ballester NM, Hill JP, Ariga Okay. Supramolecular approaches for drug improvement. Curr Med Chem. 2012;19:2388–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Zhang Y, Meng Z, Guo L, Yuan X, Zhang Y, et al. Supramolecular mixture chemotherapy: a pH-responsive co-encapsulation drug supply system. Chem Sci. 2020;11:6275–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu G, Yu W, Shao L, Zhang Z, Chi X, Mao Z, et al. Fabrication of a focused drug supply system from a pillar [5] arene-based supramolecular diblock copolymeric amphiphile for efficient most cancers remedy. Adv Funct Mater. 2016;26:8999–9008.

    CAS 

    Google Scholar
     

  • Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, Lorusso PM, et al. Part I research of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in sufferers with superior stable tumors. Clin Most cancers Res. 2016;22:3157–63.


    Google Scholar
     

  • Mross Okay, Niemann B, Massing U, Drevs J, Unger C, Bhamra R, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in sufferers with stable tumors: An open-label, single-dose research. Most cancers Chemother Pharmacol. 2004;54:514–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan SY, Yuan Y, Shi X, Yuan CY. Improved drug supply and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by focusing on Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids Surfaces B Biointerfaces. 2020;190:110966. https://doi.org/10.1016/j.colsurfb.2020.110966.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, et al. Preparation, characterization, and in vitro focused supply of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomed. 2010;5:669–77.

    CAS 

    Google Scholar
     

  • Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an environment friendly noscapine drug supply system for potential use in breast most cancers: preparation and in vitro evaluation. Int J Nanomed. 2010;5:525–32.

    CAS 

    Google Scholar
     

  • Langiu M, Dadparvar M, Kreuter J, Ruonala MO. Human serum albumin-based nanoparticle-mediated in vitro gene supply. PLoS ONE. 2014;9:1–7.


    Google Scholar
     

  • Le TT, Kim D. Folate-PEG/Hyd-curcumin/C18-g-PSI micelles for web site particular supply of curcumin to colon most cancers cells through Wnt/β-catenin signaling pathway. Mater Sci Eng C. 2019;101:464–71. https://doi.org/10.1016/j.msec.2019.03.100.

    CAS 
    Article 

    Google Scholar
     

  • Zhang HY, Yong SC, Adu-Frimpong M, Nan YJ, Ming XX. Glutathione-sensitive PEGylated curcumin prodrug nanomicelles: preparation, characterization, mobile uptake and bioavailability analysis. Int J Pharm. 2019;555:270–9. https://doi.org/10.1016/j.ijpharm.2018.11.049.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Andrade F, Rafael D, Vilar-Hernández M, Montero S, Martínez-Trucharte F, Seras-Franzoso J, et al. Polymeric micelles focused towards CD44v6 receptor improve niclosamide efficacy towards colorectal most cancers stem cells and scale back circulating tumor cells in vivo. J Management Launch. 2021;331:198–212.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar S, Xiao QR, Wei J, Wei YY, Wang Y, Gao PC, et al. Bioinspired DNA self-assembly for focused most cancers cell imaging and drug supply. Colloids Surfaces A Physicochem Eng Asp. 2020;585:124182. https://doi.org/10.1016/j.colsurfa.2019.124182.

    CAS 
    Article 

    Google Scholar
     

  • Ding L, Li J, Wu C, Yan F, Li X, Zhang S. A self-assembled RNA-triple helix hydrogel drug supply system focusing on triple-negative breast most cancers. J Mater Chem B. 2020;8:3527–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, He Y, Ji J, Zheng S, Cheng Y. Tumor focused curcumin supply by folate-modified MPEG-PCL self-assembly micelles for colorectal most cancers remedy. Int J Nanomed. 2020;15:1239–52.

    CAS 

    Google Scholar
     

  • Hong W, Guo F, Yu N, Ying S, Lou B, Wu J, et al. A novel folic acid receptor-targeted drug supply system based mostly on curcumin-loaded β-cyclodextrin nanoparticles for most cancers therapy. Drug Des Devel Ther. 2021;15:2843–55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi P. Stimuli-responsive nanocarriers for drug supply, tumor imaging, remedy and theranostics. Theranostics. 2020;10:4557–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Methods for stimuli-controlled launch: supplies and purposes. J Management Launch. 2019;294:355–71. https://doi.org/10.1016/j.jconrel.2018.12.038.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wei L, Chen J, Ding J. Sequentially stimuli-responsive anticancer nanomedicines. Nanomedicine. 2021;16:261–4. https://doi.org/10.2217/nnm-2021-0019.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Danhier F, Feron O, Préat V. To use the tumor microenvironment: passive and energetic tumor focusing on of nanocarriers for anti-cancer drug supply. J Management Launch. 2010;148:135–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate programs for drug supply. Nat Rev Drug Discov. 2014;13:813–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond PT. Constructing biomedical supplies layer-by-layer. Mater Immediately. 2012;15:196–206.

    CAS 

    Google Scholar
     

  • Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: an ideal storm for most cancers development. Nat Rev Most cancers. 2011;11:671–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown JM, Wilson WR. Exploiting tumour hypoxia in most cancers therapy. Nat Rev Most cancers. 2004;4:437–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug launch and diagnostics. Adv Drug Deliv Rev. 2012;64:967–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN. Endogenous and exogenous stimuli-responsive drug supply programs for programmed site-specific launch. Molecules. 2019;24:1–21.


    Google Scholar
     

  • Warburg O. On the origin of most cancers cells. Science. 1956;123:309–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug supply. Mol Pharm. 2010;7:1913–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balamurali V, Pramodkuma TM, Srujana N, Venkatesh MP, Gupta NV, Krishna KL, et al. pH delicate drug supply programs: a evaluate. Am J Drug Discov Dev. 2010;1:24–48.


    Google Scholar
     

  • Liu M, Du H, Zhang W, Zhai G. Inner stimuli-responsive nanocarriers for drug supply: design methods and purposes. Mater Sci Eng C. 2017;71:1267–80. https://doi.org/10.1016/j.msec.2016.11.030.

    CAS 
    Article 

    Google Scholar
     

  • Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A. The chemistry, physiology and pathology of pH in most cancers. Philos Trans R Soc B Biol Sci. 2014. https://doi.org/10.1098/rstb.2013.0099.

    Article 

    Google Scholar
     

  • Tang H, Zhao W, Yu J, Li Y, Zhao C. Current improvement of pH-responsive polymers for most cancers nanomedicine. Molecules. 2019. https://doi.org/10.3390/molecules24010004.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Woraphatphadung T, Sajomsang W, Rojanarata T, Ngawhirunpat T, Tonglairoum P, Opanasopit P. Growth of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug supply. AAPS PharmSciTech. 2018;19:991–1000.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo S, Qiu L, Chen Y, Wang X, Ma B, Qu C, et al. TMEM16A-inhibitor loaded pH-responsive nanoparticles: a novel dual-targeting antitumor remedy for lung adenocarcinoma. Biochem Pharmacol. 2020;178:114062. https://doi.org/10.1016/j.bcp.2020.114062.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Tune J, Xu B, Yao H, Lu X, Tan Y, Wang B, et al. Schiff-linked PEGylated doxorubicin prodrug forming pH-responsive nanoparticles with excessive drug loading and efficient anticancer remedy. Entrance Oncol. 2021;11:1–10.


    Google Scholar
     

  • Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Biomineralization impressed floor engineering of nanocarriers for pH-responsive, focused drug supply. Biomaterials. 2013;34:1364–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng P, Liu Y, Chen J, Xu W, Li G, Ding J. Focused pH-responsive polyion complicated micelle for managed intracellular drug supply. Chinese language Chem Lett. 2020;31:1178–82.

    CAS 

    Google Scholar
     

  • Zhang Y, Xing Y, Xian M, Shuang S, Dong C. Folate-targeting and bovine serum albumin-gated mesoporous silica nanoparticles as a redox-responsive service for epirubicin launch. New J Chem. 2019;43:2694–701.

    CAS 

    Google Scholar
     

  • Xiao D, Jia HZ, Zhang J, Liu CW, Zhuo RX, Zhang XZ. A dual-responsive mesoporous silica nanoparticle for tumor-triggered focusing on drug supply. Small. 2014;10:591–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi Y, Yin X, Solar Okay, Feng S, Liu J, Chen D, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug supply to osteosarcoma in animal fashions. J Management Launch. 2017;261:113–25. https://doi.org/10.1016/j.jconrel.2017.06.027.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yin X, Chi Y, Guo C, Feng S, Liu J, Solar Okay, et al. Chitooligosaccharides modified reduction-sensitive liposomes: enhanced cytoplasmic drug supply and osteosarcomas-tumor inhibition in animal fashions. Pharm Res. 2017;34:2172–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Movassaghian S, Merkel OM, Torchilin VP. Purposes of polymer micelles for imaging and drug supply. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:691–707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar C, Li X, Du X, Wang T. Redox-responsive micelles for triggered drug supply and efficient laryngopharyngeal most cancers remedy. Int J Biol Macromol. 2018;112:65–73. https://doi.org/10.1016/j.ijbiomac.2018.01.136.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Kang Y, Lu L, Lan J, Ding Y, Yang J, Zhang Y, et al. Redox-responsive polymeric micelles fashioned by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater. 2018;68:137–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gisbert-garzar M, Vallet-Regí, M. Redox-responsive mesoporous silica nanoparticles for most cancers therapy: latest updates. Nanomaterials. 2021. https://doi.org/10.3390/nano11092222.

    Article 

    Google Scholar
     

  • Yan H, Dong J, Huang X, Du X. Protein-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles through diselenide linkages for drug launch monitoring in actual time and tumor chemotherapy. ACS Appl Mater Interfaces. 2021;13:29070–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei B, Wang M, Jiang Z, Qi W, Su R, He Z. Setting up redox-responsive metal-organic framework nanocarriers for anticancer drug supply. ACS Appl Mater Interfaces. 2018;10:16698–706. https://doi.org/10.1021/acsami.7b19693.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug launch methods in most cancers remedy (invited evaluate). Mol Membr Biol. 2010;27:353–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAtee CO, Barycki JJ, Simpson MA. Rising roles for hyaluronidase in most cancers metastasis and remedy. Adv Most cancers Res. 2014;123:1-34. https://doi.org/10.1016/B978-0-12-800092-2.00001-0.

    E-book 

    Google Scholar
     

  • Lafleur MA, Drew AF, de Sousa EL, Blick T, Payments M, Walker EC, et al. Upregulation of matrix metalloproteinases (MMPs) in breast most cancers xenografts: a significant induction of stromal MMP-13. Int J Most cancers. 2005;114:544–54. https://doi.org/10.1002/ijc.20763.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Cai D, Han C, Liu C, Ma X, Qian J, Zhou J, et al. Chitosan-capped enzyme-responsive hole mesoporous silica nanoplatforms for colon-specific drug supply. Nanoscale Res Lett. 2020. https://doi.org/10.1186/s11671-020-03351-8.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Keith B, Simon MC. Hypoxia-inducible components, stem cells, and most cancers. Cell. 2007;129:465–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Jiang Y, Zhang M, Tang Z, He M, Bu W. Modulating hypoxia through nanomaterials chemistry for environment friendly therapy of stable tumors. Acc Chem Res. 2018;51:2502–11. https://doi.org/10.1021/acs.accounts.8b00214.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Im S, Lee J, Park D, Park A, Kim Y-M, Kim WJ. Hypoxia-triggered reworking immunomodulator for most cancers immunotherapy through photodynamically enhanced antigen presentation of dendritic cell. ACS Nano. 2019;13:476–88. https://doi.org/10.1021/acsnano.8b07045.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Liu H-M, Zhang Y-F, Xie Y-D, Cai Y-F, Li B-Y, Li W, et al. Hypoxia-responsive ionizable liposome supply siRNA for glioma remedy. Int J Nanomed. 2017;12:1065–83.

    CAS 

    Google Scholar
     

  • Poon Z, Chang D, Zhao X, Hammond PT. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo focusing on of tumor hypoxia. ACS Nano. 2011;5:4284–92. https://doi.org/10.1021/nn200876f.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Zhen J, Tian S, Liu Q, Zheng C, Zhang Z, Ding Y, et al. Nanocarriers conscious of a hypoxia gradient facilitate enhanced tumor penetration and improved anti-tumor efficacy. Biomater Sci. 2019;7:2986–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian C, Feng P, Yu J, Chen Y, Hu Q, Solar W, et al. Anaerobe-inspired anticancer nanovesicles. Angew Chemie. 2017;129:2632–7. https://doi.org/10.1002/ange.201611783.

    Article 

    Google Scholar
     

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, et al. Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug supply to stable tumors. Chem A Eur J. 2018;24:12490–4. https://doi.org/10.1002/chem.201802229.

    CAS 
    Article 

    Google Scholar
     

  • Yang G, Phua SZF, Lim WQ, Zhang R, Feng L, Liu G, et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and glorious therapeutic efficacy. Adv Mater. 2019;31:1901513. https://doi.org/10.1002/adma.201901513.

    CAS 
    Article 

    Google Scholar
     

  • Fruehauf KR, Kim TI, Nelson EL, Patterson JP, Wang S-W, Shea KJ. Metabolite responsive nanoparticle-protein complicated. Biomacromolecules. 2019;20:2703–12. https://doi.org/10.1021/acs.biomac.9b00470.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Pasparakis G, Tsitsilianis C. LCST polymers: thermoresponsive nanostructured assemblies in direction of bioapplications. Polymer. 2020;211:123146. https://doi.org/10.1016/j.polymer.2020.123146.

    CAS 
    Article 

    Google Scholar
     

  • Castillo-Henríquez L, Castro-Alpízar J, Lopretti-Correa M, Vega-Baudrit J. Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug supply in wound therapeutic. Int J Mol Sci. 2021;22:1–25.


    Google Scholar
     

  • Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: purposes in drug supply and tissue engineering. Polymer. 2020;211:123063. https://doi.org/10.1016/j.polymer.2020.123063.

    CAS 
    Article 

    Google Scholar
     

  • Tipa C, Cidade MT, Vieira T, Silva JC, Soares PIP, Borges JP. A brand new long-term composite drug supply system based mostly on thermo-responsive hydrogel and nanoclay. Nanomaterials. 2021;11:1–22.


    Google Scholar
     

  • Ahsan A, Farooq MA, Parveen A. Thermosensitive chitosan-based injectable hydrogel as an environment friendly anticancer drug service. ACS Omega. 2020;5:20450–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazempour M, Edjlali L, Akbarzadeh A, Davaran S, Farid SS. Synthesis and characterization of twin pH-and thermo-responsive graphene-based nanocarrier for efficient anticancer drug supply. J Drug Deliv Sci Technol. 2019;54:101158. https://doi.org/10.1016/j.jddst.2019.101158.

    CAS 
    Article 

    Google Scholar
     

  • Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based mostly on poly(N-isopropylacrylamide) serving as a wise doxorubicin supply system. Iran Polym J. 2020;29:197–207. https://doi.org/10.1007/s13726-020-00785-w.

    CAS 
    Article 

    Google Scholar
     

  • Mirrahimi M, Abed Z, Beik J, Shiri I, Shiralizadeh Dezfuli A, Mahabadi VP, et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for mixed most cancers chemo-photothermal remedy. Pharmacol Res. 2019;143:178–85. https://doi.org/10.1016/j.phrs.2019.01.005.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yan L, Li X. Biodegradable stimuli-responsive polymeric micelles for therapy of malignancy. Curr Pharm Biotechnol. 2016;17:227–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomoto T, Fukushima S, Kumagai M, Machitani Okay, Arnida, Matsumoto Y, et al. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene switch. Nat Commun. 2014. https://doi.org/10.1038/ncomms4545.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yen HC, Cabral H, Mi P, Toh Okay, Matsumoto Y, Liu X, et al. Mild-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally managed in vivo chemotherapy. ACS Nano. 2014;8:11591–602.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo D, Carter KA, Razi A, Geng J, Shao S, Giraldo D, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug launch. Biomaterials. 2016;75:193–202.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatun Z, Nurunnabi M, Nafiujjaman M, Reeck GR, Khan HA, Cho KJ, et al. A hyaluronic acid nanogel for photo-chemo theranostics of lung most cancers with simultaneous light-responsive managed launch of doxorubicin. Nanoscale. 2015;7:10680–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Solar X, Liu J, Feng L, Liu Z. Mild-responsive, singlet-oxygen-triggered on-demand drug launch from photosensitizer-doped mesoporous silica nanorods for most cancers mixture remedy. Adv Funct Mater. 2016;26:4722–32.

    CAS 

    Google Scholar
     

  • Tong R, Chiang HH, Kohane DS. Photoswitchable nanoparticles for in vivo most cancers chemotherapy. Proc Natl Acad Sci USA. 2013;110:19048–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timko BP, Arruebo M, Shankarappa SA, McAlvin JB, Okonkwo OS, Mizrahi B, et al. Close to-infrared-actuated gadgets for remotely managed drug supply. Proc Natl Acad Sci USA. 2014;111:1349–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan J, Zhang Z, Wang Y, Lin S, Yang S. Picture-responsive degradable hole mesoporous organosilica nanoplatforms for drug supply. J Nanobiotechnol. 2020;18:1–14. https://doi.org/10.1186/s12951-020-00642-1.

    CAS 
    Article 

    Google Scholar
     

  • Chen W-T, Kang S-T, Lin J-L, Wang C-H, Chen R-C, Yeh C-Okay. Focused tumor theranostics utilizing folate-conjugated and camptothecin-loaded acoustic nanodroplets in a mouse xenograft mannequin. Biomaterials. 2015;53:699–708.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Zhang Y, Li Z, Mei E, Lin J, Li F, et al. Mild-responsive biodegradable nanorattles for most cancers theranostics. Adv Mater. 2018;30:1706150. https://doi.org/10.1002/adma.201706150.

    CAS 
    Article 

    Google Scholar
     

  • Wang X, Niu D, Li P, Wu Q, Bo X, Liu B, et al. Twin-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T 2 -weighted magnetic resonance imaging. ACS Nano. 2015;9:5646–56. https://doi.org/10.1021/nn5068094.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Carson AR, McTiernan CF, Lavery L, Grata M, Leng X, Wang J, et al. Ultrasound-targeted microbubble destruction to ship siRNA most cancers remedy. Most cancers Res. 2012;72:6191–9. https://doi.org/10.1158/0008-5472.CAN-11-4079.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Cabral H, Matsumoto Y, Mizuno Okay, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours is determined by measurement. Nat Nanotechnol. 2011;6:815–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandenbroucke RE, Lentacker I, Demeester J, De Smedt SC, Sanders NN. Ultrasound assisted siRNA supply utilizing PEG-siPlex loaded microbubbles. J Management Launch. 2008;126:265–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, He Q, Zhao W, Luo J, Gao W. Tumor-homing, pH- and ultrasound-responsive polypeptide-doxorubicin nanoconjugates overcome doxorubicin resistance in most cancers remedy. J Management Launch. 2017;264:66–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An outline of energetic and passive focusing on methods to enhance the nanocarriers effectivity to tumour websites. J Pharm Pharmacol. 2019;71:1185–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Good nanocarrier-based drug supply programs for most cancers remedy and toxicity research: a evaluate. J Adv Res. 2019;15:1–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carita AC, Eloy JO, Chorilli M, Lee RJ, Leonardi GR. Current advances and views in liposomes for cutaneous drug supply. Curr Med Chem. 2017;25:606–35.


    Google Scholar
     

  • Qiang H, Li J, Wang S, Feng T, Cai H, Liu Z, et al. Distribution of systemically administered nanoparticles throughout acute pancreatitis: results of particle measurement and illness severity. Pharmazie. 2021;76:180–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onzi G, Guterres SS, Pohlmann AR, Frank LA. Passive focusing on and the improved permeability and retention (EPR) impact. ADME Encycl. Cham: Springer Worldwide Publishing; 2021. p. 1–13.


    Google Scholar
     

  • Barenholz Y. Doxil®—The primary FDA-approved nano-drug: classes discovered. J Management Launch. 2012;160:117–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Hamishehkar H, Bahadori MB, Vandghanooni S, Eskandani M, Nakhlband A, Eskandani M. Preparation, characterization and anti-proliferative results of sclareol-loaded stable lipid nanoparticles on A549 human lung epithelial most cancers cells. J Drug Deliv Sci Technol. 2018;45:272–80.

    CAS 

    Google Scholar
     

  • Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as supply automobiles for osteosarcoma. Nanomed Nanotechnol Biol Med. 2012;8:440–51.

    CAS 

    Google Scholar
     

  • Clemente N, Ferrara B, Gigliotti C, Boggio E, Capucchio M, Biasibetti E, et al. Strong lipid nanoparticles carrying temozolomide for melanoma therapy. Preliminary in vitro and in vivo research. Int J Mol Sci. 2018;19:255.


    Google Scholar
     

  • Patel JK, Patel AP, Pathak YV. Passive focusing on of nanoparticles to most cancers BT—floor modification of nanoparticles for focused drug supply. Cham: Springer Worldwide Publishing; 2019. p. 125–43.


    Google Scholar
     

  • Chithrani BD, Ghazani AA, Chan WCW. Figuring out the dimensions and form dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug supply. Adv Mater. 2012;24:1504–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Part III trial of nanoparticle albumin-bound paclitaxel in contrast with polyethylated castor oil-based paclitaxel in ladies with breast most cancers. J Clin Oncol. 2005;23:7794–803. https://doi.org/10.1200/JCO.2005.04.937.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Sriraman SK, Aryasomayajula B, Torchilin VP. Obstacles to drug supply in stable tumors. Tissue Obstacles. 2014;2:e29528-1–10.


    Google Scholar
     

  • Ahmad A, Khan F, Mishra RK, Khan R. Precision most cancers nanotherapy: evolving position of multifunctional nanoparticles for most cancers energetic focusing on. J Med Chem. 2019;62:10475–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Influence of tumor-specific focusing on on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007;104:15549–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: position of tumor kind and microenvironment. Proc Natl Acad Sci. 1998;95:4607–12. https://doi.org/10.1073/pnas.95.8.4607.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Carmeliet P, Jain RK. Angiogenesis in most cancers and different ailments. Nature. 2000;407:249–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges in direction of focused supply of most cancers therapeutics. Nat Commun. 2018;9:1410.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic purposes in most cancers. Most cancers Biol Med. 2021;18:319–35. https://doi.org/10.20892/j.issn.2095-3941.2020.0496.

    Article 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.