The interplay between nanoparticles and immune system: software within the remedy of inflammatory ailments | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Barenholz Y. Doxil®–the primary FDA-approved nano-drug: classes discovered. J Management Launch. 2012;160:117–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Prosperi D, Colombo M, Zanoni I, Granucci F. Drug nanocarriers to deal with autoimmunity and persistent inflammatory ailments. Semin Immunol. 2017;34:61–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Zhou Y, Solar Q, Zhou C, Hu S, Lenahan C, et al. Replace on nanoparticle-based drug supply system for anti-inflammatory remedy. Entrance Bioeng Biotechnol. 2021;9:630352.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Zhuang Y, Rampal N, Hewitt R, Divitini G, O’Keefe CA, et al. Formulation of metal-organic framework-based drug carriers by managed coordination of methoxy PEG phosphate: boosting colloidal stability and redispersibility. J Am Chem Soc. 2021;143:13557–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Kind follows perform: nanoparticle form and its implications for nanomedicine. Chem Rev. 2017;117:11476–521.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges in direction of focused supply of most cancers therapeutics. Nat Commun. 2018;9:1410.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Liu C. Nanomaterial-based bone regeneration. Nanoscale. 2017;9:4862–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Jindal A, Sarkar S, Alam A. Nanomaterials-mediated immunomodulation for most cancers therapeutics. Entrance Chem. 2021;9:629635.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkin J, Cohen B. An summary of the immune system. Lancet. 2001;357:1777–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Hato T, Dagher PC. How the innate immune system senses bother and causes bother. Clin J Am Soc Nephrol. 2015;10:1459–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Netea MG, Schlitzer A, Placek Ok, Joosten LAB, Schultze JL. Innate and adaptive immune reminiscence: an evolutionary continuum within the host’s response to pathogens. Cell Host Microbe. 2019;25:13–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Farber DL, Netea MG, Radbruch A, Rajewsky Ok, Zinkernagel RM. Immunological reminiscence: classes from the previous and a glance to the long run. Nat Rev Immunol. 2016;16:124–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125:S33-40.

    PubMed 

    Google Scholar
     

  • Eisenbarth SC, Baumjohann D, Craft J, Fazilleau N, Ma CS, Tangye SG, et al. CD4(+) T cells that assist B cells—a proposal for uniform nomenclature. Traits Immunol. 2021;42:658–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Dinarello CA. Anti-inflammatory brokers: current and future. Cell. 2010;140:935–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in improvement, homeostasis and illness. Nature. 2013;496:445–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locati M, Curtale G, Mantovani A. Range, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44:439–49.

    CAS 

    Google Scholar
     

  • Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, et al. The human coronary heart incorporates distinct macrophage subsets with divergent origins and capabilities. Nat Med. 2018;24:1234–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154:186–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and performance in well being and illness. J Cell Physiol. 2018;233:6425–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Gaspar N, Zambito G, Löwik C, Mezzanotte L. Lively nano-targeting of macrophages. Curr Pharm Des. 2019;25:1951–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Poupot R, Goursat C, Fruchon S. Multivalent nanosystems: focusing on monocytes/macrophages. Int J Nanomedicine. 2018;13:5511–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, et al. Continual variable stress prompts hematopoietic stem cells. Nat Med. 2014;20:754–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendelson A, Frenette PS. Hematopoietic stem cell area of interest upkeep throughout homeostasis and regeneration. Nat Med. 2014;20:833–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity. 2011;34:590–601.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozbakir B, Crielaard BJ, Metselaar JM, Storm G, Lammers T. Liposomal corticosteroids for the remedy of inflammatory problems and most cancers. J Management Launch. 2014;190:624–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29:1005–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, et al. Focused nanomedicines for the remedy of bone illness and regeneration. Med Res Rev. 2021;41:1221–54.

    PubMed 

    Google Scholar
     

  • Sou Ok, Goins B, Takeoka S, Tsuchida E, Phillips WT. Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo. Biomaterials. 2007;28:2655–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Agool A, Slart RH, Thorp KK, Glaudemans AW, Cobben DC, Been LB, et al. Impact of radiotherapy and chemotherapy on bone marrow exercise: a 18F-FLT-PET research. Nucl Med Commun. 2011;32:17–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Ye YX, Calcagno C, Binderup T, Courties G, Keliher EJ, Wojtkiewicz GR, et al. Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ Res. 2015;117:835–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alaarg A, Pérez-Medina C, Metselaar JM, Nahrendorf M, Fayad ZA, Storm G, et al. Making use of nanomedicine in maladaptive irritation and angiogenesis. Adv Drug Deliv Rev. 2017;119:143–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi D, Wei M, Jiao S, Track Y, Wang X, Xie G, et al. Hypoxia inducible issue 1α in vascular easy muscle cells promotes angiotensin II-induced vascular transforming by way of activation of CCL7-mediated macrophage recruitment. Cell Loss of life Dis. 2019;10:544.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kratofil RM, Kubes P, Deniset JF. Monocyte conversion throughout irritation and damage. Arterioscler Thromb Vasc Biol. 2017;37:35–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Mack M. Irritation and fibrosis. Matrix Biol. 2018;68–69:106–21.

    PubMed 

    Google Scholar
     

  • Wu Z, Chen C, Luo J, Davis JRJ, Zhang B, Tang L, et al. EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) nanoparticles as a provider for the supply of CCR2- shRNA to atherosclerotic macrophage in vitro. Sci Rep. 2020;10:19636.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krohn-Grimberghe M, Mitchell MJ, Schloss MJ, Khan OF, Courties G, Guimaraes PPG, et al. Nanoparticle-encapsulated siRNAs for gene silencing within the haematopoietic stem-cell area of interest. Nat Biomed Eng. 2020;4:1076–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakano Y, Matoba T, Tokutome M, Funamoto D, Katsuki S, Ikeda G, et al. Nanoparticle-mediated supply of irbesartan induces cardioprotection from myocardial ischemia-reperfusion damage by antagonizing monocyte-mediated irritation. Sci Rep. 2016;6:29601.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji H, Qiu R, Gao X, Zhang R, Li X, Hei Z, et al. Propofol attenuates monocyte-endothelial adhesion by way of modulating connexin43 expression in monocytes. Life Sci. 2019;232:116624.

    CAS 
    PubMed 

    Google Scholar
     

  • Sager HB, Dutta P, Dahlman JE, Hulsmans M, Courties G, Solar Y, et al. RNAi focusing on a number of cell adhesion molecules reduces immune cell recruitment and vascular irritation after myocardial infarction. Sci Transl Med. 2016;8:342ra80.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and persistent wound therapeutic. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071545.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galili U, Zhu Z, Chen J, Goldufsky JW, Schaer GL. Close to full restore after myocardial infarction in grownup mice by altering the inflammatory response with intramyocardial injection of α-gal nanoparticles. Entrance Cardiovasc Med. 2021;8:719160.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaymakcalan OE, Abadeer A, Goldufsky JW, Galili U, Karinja SJ, Dong X, et al. Topical α-gal nanoparticles speed up diabetic wound therapeutic. Exp Dermatol. 2020;29:404–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Galili U. Biosynthesis of α-Gal epitopes (Galα1-3Galβ1-4GlcNAc-R) and their distinctive potential in future α-Gal therapies. Entrance Mol Biosci. 2021;8:746883.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkins SJ, Ruckerl D, Prepare dinner PC, Jones LH, Finkelman FD, van Rooijen N, et al. Native macrophage proliferation, fairly than recruitment from the blood, is a signature of TH2 irritation. Science. 2011;332:1284–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain regionally all through grownup life with minimal contribution from circulating monocytes. Immunity. 2013;38:792–804.

    CAS 
    PubMed 

    Google Scholar
     

  • Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, et al. Native proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19:1166–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindau A, Härdtner C, Hergeth SP, Blanz KD, Dufner B, Hoppe N, et al. Atheroprotection by SYK inhibition fails in established illness when native macrophage proliferation dominates lesion development. Fundamental Res Cardiol. 2016;111:20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCloskey E, Paterson AH, Powles T, Kanis JA. Clodronate. Bone. 2021;143:115715.

    CAS 
    PubMed 

    Google Scholar
     

  • Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, et al. Macrophages are alternatively activated in sufferers with endometriosis and required for progress and vascularization of lesions in a mouse mannequin of illness. Am J Pathol. 2009;175:547–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Yuan R, Li C, Wei W, Shen W, Cui Y, et al. Macrophage depletion with clodronate-containing liposomes impacts the incidence and improvement of rheumatoid arthritis. Z Rheumatol. 2019;78:996–1003.

    CAS 
    PubMed 

    Google Scholar
     

  • Richards PJ, Williams AS, Goodfellow RM, Williams BD. Liposomal clodronate eliminates synovial macrophages, reduces irritation and ameliorates joint destruction in antigen-induced arthritis. Rheumatology. 1999;38:818–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Qi R, Majoros I, Misra AC, Koch AE, Campbell P, Marotte H, et al. Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis. J Biomed Nanotechnol. 2015;11:1431–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, et al. Folate-targeted nanoparticles present efficacy within the remedy of inflammatory arthritis. Arthritis Rheum. 2011;63:2671–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque irritation. Nat Commun. 2014;5:3065.

    PubMed 

    Google Scholar
     

  • Tang J, Lobatto ME, Hassing L, van der Staay S, van Rijs SM, Calcagno C, et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque irritation. Sci Adv. 2015. https://doi.org/10.1126/sciadv.1400223.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao X, Leng X, Zhang Q. The present state of nanoparticle-induced macrophage polarization and reprogramming analysis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18020336.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahamad N, Kar A, Mehta S, Dewani M, Ravichandran V, Bhardwaj P, et al. Immunomodulatory nanosystems for treating inflammatory ailments. Biomaterials. 2021;274:120875.

    CAS 
    PubMed 

    Google Scholar
     

  • Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: a chance for improved outcomes in biomaterials and regenerative drugs. Biomaterials. 2012;33:3792–802.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon D, Cha BG, Cho Y, Min J, Park EB, Kang SJ, et al. Additional-large pore mesoporous silica nanoparticles for guiding in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017;17:2747–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Taratummarat S, Sangphech N, Vu CTB, Palaga T, Ondee T, Surawut S, et al. Gold nanoparticles attenuates bacterial sepsis in cecal ligation and puncture mouse mannequin by the induction of M2 macrophage polarization. BMC Microbiol. 2018;18:85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran TH, Rastogi R, Shelke J, Amiji MM. Modulation of macrophage purposeful polarity in direction of anti-inflammatory phenotype with plasmid DNA supply in CD44 focusing on hyaluronic acid nanoparticles. Sci Rep. 2015;5:16632.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran TH, Krishnan S, Amiji MM. MicroRNA-223 induced repolarization of peritoneal macrophages utilizing CD44 focusing on hyaluronic acid nanoparticles for anti-inflammatory results. PLoS ONE. 2016;11:e0152024.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han J, Kim YS, Lim MY, Kim HY, Kong S, Kang M, et al. Twin roles of graphene oxide to attenuate irritation and elicit well timed polarization of macrophage phenotypes for cardiac restore. ACS Nano. 2018;12:1959–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8:61–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30:e1706759.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, et al. Biomimetic proteolipid vesicles for focusing on infected tissues. Nat Mater. 2016;15:1037–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polak R, Lim RM, Beppu MM, Pitombo RN, Cohen RE, Rubner MF. Liposome-loaded cell backpacks. Adv Healthc Mater. 2015;4:2832–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Cell-mediated supply of nanoparticles: profiting from circulatory cells to focus on nanoparticles. J Management Launch. 2014;190:531–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, et al. Macrophage supply of nanoformulated antiretroviral drug to the mind in a murine mannequin of neuroAIDS. J Immunol. 2009;183:661–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Brynskikh AM, Zhao Y, Mosley RL, Li S, Boska MD, Klyachko NL, et al. Macrophage supply of therapeutic nanozymes in a murine mannequin of Parkinson’s illness. Nanomedicine. 2010;5:379–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahrens ET, Bulte JW. Monitoring immune cells in vivo utilizing magnetic resonance imaging. Nat Rev Immunol. 2013;13:755–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Richards JM, Shaw CA, Lang NN, Williams MC, Semple SI, MacGillivray TJ, et al. In vivo mononuclear cell monitoring utilizing superparamagnetic particles of iron oxide: feasibility and security in people. Circ Cardiovasc Imaging. 2012;5:509–17.

    PubMed 

    Google Scholar
     

  • Bönner F, Merx MW, Klingel Ok, Begovatz P, Flögel U, Sager M, et al. Monocyte imaging after myocardial infarction with 19F MRI at 3 T: a pilot research in explanted porcine hearts. Eur Coronary heart J Cardiovasc Imaging. 2015;16:612–20.

    PubMed 

    Google Scholar
     

  • Thurlings RM, Wijbrandts CA, Bennink RJ, Dohmen SE, Voermans C, Wouters D, et al. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory illness. PLoS ONE. 2009;4:e7865.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher MF, Grimm J, Swirski FK, Libby P, Gerszten RE, Allport JR, et al. Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation. 2008;117:388–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis administration. Proc Natl Acad Sci USA. 2017;114:11488–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park J, Zhang Y, Saito E, Gurczynski SJ, Moore BB, Cummings BJ, et al. Intravascular innate immune cells reprogrammed by way of intravenous nanoparticles to advertise purposeful restoration after spinal wire damage. Proc Natl Acad Sci USA. 2019;116:14947–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils within the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11:519–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Liew PX, Kubes P. The neutrophil’s position throughout well being and illness. Physiol Rev. 2019;99:1223–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33:657–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence SM, Corriden R, Nizet V. The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev. 2018. https://doi.org/10.1128/MMBR.00057-17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in well being and illness. Traits Immunol. 2010;31:318–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolaczkowska E, Kubes P. Neutrophil recruitment and performance in well being and irritation. Nat Rev Immunol. 2013;13:159–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The neutrophil’s selection: phagocytose vs make neutrophil extracellular traps. Entrance Immunol. 2018;9:288.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fromen CA, Kelley WJ, Fish MB, Adili R, Noble J, Hoenerhoff MJ, et al. Neutrophil-particle interactions in blood circulation drive particle clearance and alter neutrophil responses in acute irritation. ACS Nano. 2017;11:10797–807.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, et al. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating irritation. J Management Launch. 2019;300:185–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang CY, Dong X, Gao J, Lin W, Liu Z, Wang Z. Nanoparticle-induced neutrophil apoptosis will increase survival in sepsis and alleviates neurological injury in stroke. Sci Adv. 2019;5:eaax7964.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colón DF, Wanderley CW, Franchin M, Silva CM, Hiroki CH, Castanheira FVS, et al. Neutrophil extracellular traps (NETs) exacerbate severity of toddler sepsis. Crit Care. 2019;23:113.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: think about cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee YY, Park HH, Park W, Kim H, Jang JG, Hong KS, et al. Lengthy-acting nanoparticulate DNase-1 for efficient suppression of SARS-CoV-2-mediated neutrophil actions and cytokine storm. Biomaterials. 2021;267:120389.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Li J, Cho J, Malik AB. Prevention of vascular irritation by nanoparticle focusing on of adherent neutrophils. Nat Nanotechnol. 2014;9:204–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu D, Dong X, Shi X, Zhang C, Wang Z. Neutrophil-based drug supply techniques. Adv Mater. 2018;30:e1706245.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu D, Gao J, Wang Z. Neutrophil-mediated supply of therapeutic nanoparticles throughout blood vessel barrier for remedy of irritation and an infection. ACS Nano. 2015;9:11800–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Ling CL, Pang L, Wang Q, Liu JX, Wang BS, et al. Direct macromolecular drug supply to cerebral ischemia space utilizing neutrophil-mediated nanoparticles. Theranostics. 2017;7:3260–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, et al. Neutrophil membrane-coated nanoparticles inhibit synovial irritation and alleviate joint injury in inflammatory arthritis. Nat Nanotechnol. 2018;13:1182–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Liu X, Yang Q, Yu L, Chang Y, Qu M. Neutrophil membrane-enveloped nanoparticles for the amelioration of renal ischemia-reperfusion damage in mice. Acta Biomater. 2020;104:158–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Chu D, Wang Z. Cell membrane-formed nanovesicles for disease-targeted supply. J Management Launch. 2016;224:208–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Wang S, Wang Z. Excessive yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation remedy. Biomaterials. 2017;135:62–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandstadter JD, Maillard I. Notch signalling in T cell homeostasis and differentiation. Open Biol. 2019;9:190187.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Shan Q, Xue HH. TCF1 in T cell immunity: a broadened frontier. Nat Rev Immunol. 2021. https://doi.org/10.1038/s41577-021-00563-6.

    Article 
    PubMed 

    Google Scholar
     

  • Natoli G, Ostuni R. Adaptation and reminiscence in immune responses. Nat Immunol. 2019;20:783–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Liu J, Burrows PD, Wang JY. B cell improvement and maturation. Adv Exp Med Biol. 2020;1254:1–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Seifert M, Küppers R. Human reminiscence B cells. Leukemia. 2016;30:2283–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Smarr CB, Yap WT, Neef TP, Pearson RM, Hunter ZN, Ifergan I, et al. Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway irritation pre- and postsensitization. Proc Natl Acad Sci USA. 2016;113:5059–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for remedy of autoimmune illness. ACS Nano. 2014;8:2148–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity by SOCS2. Sci Sign. 2016;9:ra61.

    PubMed 

    Google Scholar
     

  • Clemente-Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S, Fandos C, et al. Increasing antigen-specific regulatory networks to deal with autoimmunity. Nature. 2016;530:434–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Singha S, Shao Ok, Yang Y, Clemente-Casares X, Solé P, Clemente A, et al. Peptide-MHC-based nanomedicines for autoimmunity perform as T-cell receptor microclustering gadgets. Nat Nanotechnol. 2017;12:701–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Heymann F, Tacke F. Immunology within the liver–from homeostasis to illness. Nat Rev Gastroenterol Hepatol. 2016;13:88–110.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Wang X, Liu X, Kumar S, Gochman G, Ji Y, et al. Use of polymeric nanoparticle platform focusing on the liver to induce Treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization mannequin. ACS Nano. 2019;13:4778–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, et al. Curcumin, the golden nutraceutical: multitargeting for a number of persistent ailments. Br J Pharmacol. 2017;174:1325–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Ohno M, Nishida A, Sugitani Y, Nishino Ok, Inatomi O, Sugimoto M, et al. Nanoparticle curcumin ameliorates experimental colitis by way of modulation of intestine microbiota and induction of regulatory T cells. PLoS ONE. 2017;12:e0185999.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the proof from in vitro, animal and human research. Br J Nutr. 2010;103:1545–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Ong SY, de Mel S, Grigoropoulos NF, Chen Y, Tan YC, Tan MSY, et al. Excessive-dose methotrexate is efficient for prevention of remoted CNS relapse in diffuse massive B cell lymphoma. Blood Most cancers J. 2021;11:143.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aletaha D, Westhovens R, Gaujoux-Viala C, Adami G, Matsumoto A, Chicken P, et al. Efficacy and security of filgotinib in methotrexate-naive sufferers with rheumatoid arthritis with poor prognostic elements: submit hoc evaluation of FINCH 3. RMD Open. 2021. https://doi.org/10.1136/rmdopen-2021-001621.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan ES, Cronstein BN. Methotrexate—how does it actually work? Nat Rev Rheumatol. 2010;6:175–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Özcan A, Sahin D, Impellizzieri D, Nguyen TT, Hafner J, Yawalkar N, et al. Nanoparticle-coupled topical methotrexate can normalize immune responses and induce tissue transforming in psoriasis. J Make investments Dermatol. 2020;140:1003-14.e8.

    PubMed 

    Google Scholar
     

  • Smelkinson MG. The hedgehog signaling pathway emerges as a pathogenic goal. J Dev Biol. 2017. https://doi.org/10.3390/jdb5040014.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haycook CP, Balsamo JA, Glass EB, Williams CH, Hong CC, Main AS, et al. PEGylated PLGA nanoparticle supply of eggmanone for T cell modulation: functions in rheumatic autoimmunity. Int J Nanomedicine. 2020;15:1215–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters MC, Ringel L, Dyjack N, Herrin R, Woodruff PG, Rios C, et al. A transcriptomic technique to find out airway immune dysfunction in T2-high and T2-low bronchial asthma. Am J Respir Crit Care Med. 2019;199:465–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Shi W, Wang H, Yue J, Mao Y, Zhou W, et al. Anti-ST2 nanoparticle alleviates lung irritation by focusing on ILC2s-CD4(+)T response. Int J Nanomedicine. 2020;15:9745–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Reth M. Receptor dissociation and B-cell activation. Curr Prime Microbiol Immunol. 2016;393:27–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Derksen V, Huizinga TWJ, van der Woude D. The position of autoantibodies within the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017;39:437–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bednar KJ, Nycholat CM, Rao TS, Paulson JC, Fung-Leung WP, Macauley MS. Exploiting CD22 to selectively tolerize autoantibody producing B-cells in rheumatoid arthritis. ACS Chem Biol. 2019;14:644–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozsgay J, Babos F, Uray Ok, Magyar A, Gyulai G, Kiss É, et al. In vitro eradication of citrullinated protein particular B-lymphocytes of rheumatoid arthritis sufferers by focused bifunctional nanoparticles. Arthritis Res Ther. 2016;18:15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnasciali A, Amoriello R, Bonechi E, Mazzoni A, Ravagli C, Doumett S, et al. T cell supply of nanoparticles-bound anti-CD20 monoclonal antibody: profitable B cell depletion within the spinal wire throughout experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2021;16:376–89.

    PubMed 

    Google Scholar
     

  • Zhong G, Yang X, Jiang X, Kumar A, Lengthy H, Xie J, et al. Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis remedy. Nanoscale. 2019;11:11605–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Ai Ok, Ji X, Askhatova D, Du R, Lu L, et al. Complete insights into the multi-antioxidative mechanisms of melanin nanoparticles and their software to guard mind from damage in ischemic stroke. J Am Chem Soc. 2017;139:856–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Vong CT, Gao C, Chen S, Wu X, Wang S, et al. Bilirubin nanomedicines for the remedy of reactive oxygen species (ROS)-mediated ailments. Mol Pharm. 2020;17:2260–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee Y, Kim H, Kang S, Lee J, Park J, Jon S. Bilirubin nanoparticles as a nanomedicine for anti-inflammation remedy. Angew Chem Int Ed Engl. 2016;55:7460–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim MJ, Lee Y, Jon S, Lee DY. PEGylated bilirubin nanoparticle as an anti-oxidative and anti inflammatory demulcent in pancreatic islet xenotransplantation. Biomaterials. 2017;133:242–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Aratani Y. Myeloperoxidase: its position for host protection, irritation, and neutrophil perform. Arch Biochem Biophys. 2018;640:47–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Sanfins E, Correia A, Stefan BG, Vilanova M, Cedervall T. Nanoparticle impact on neutrophil produced myeloperoxidase. PLoS ONE. 2018;13:e0191445.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papayannopoulos V. Neutrophil extracellular traps in immunity and illness. Nat Rev Immunol. 2018;18:134–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Pereira A, Brito GAC, Lima MLS, Silva Júnior AAD, Silva EDS, de Rezende AA, et al. Metformin hydrochloride-loaded PLGA nanoparticle in periodontal illness experimental mannequin utilizing diabetic rats. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19113488.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Nogales A, Lozano-Pérez AA, Aznar-Cervantes SD, Algieri F, Garrido-Mesa J, Garrido-Mesa N, et al. Impact of aqueous and particulate silk fibroin in a rat mannequin of experimental colitis. Int J Pharm. 2016;511:1–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Gou S, Huang Y, Sung J, Xiao B, Merlin D. Silk fibroin-based nanotherapeutics: software within the remedy of colonic ailments. Nanomedicine. 2019;14:2373–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, et al. Nanoparticles and innate immunity: new views on host defence. Semin Immunol. 2017;34:33–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Ricklin D, Hajishengallis G, Yang Ok, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waisman A, Lukas D, Clausen BE, Yogev N. Dendritic cells as gatekeepers of tolerance. Semin Immunopathol. 2017;39:153–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Gardner A, de Mingo PÁ, Ruffell B. Dendritic cells and their position in immunotherapy. Entrance Immunol. 2020;11:924.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25:1641–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Ochyl LJ, Yang E, Moon JJ. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Int J Nanomedicine. 2017;12:1251–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikelez-Alonso I, Magadán S, González-Fernández Á, Borrego F. Pure killer (NK) cell-based immunotherapies and the numerous faces of NK cell reminiscence: a glance into how nanoparticles improve NK cell exercise. Adv Drug Deliv Rev. 2021;176:113860.

    CAS 
    PubMed 

    Google Scholar
     

  • Liao N, Su L, Zheng Y, Zhao B, Wu M, Zhang D, et al. In vivo monitoring of cell viability for adoptive pure killer cell-based immunotherapy by ratiometric NIR-II fluorescence imaging. Angew Chem Int Ed Engl. 2021;60:20888–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Zachs DP, Offutt SJ, Graham RS, Kim Y, Mueller J, Auger JL, et al. Noninvasive ultrasound stimulation of the spleen to deal with inflammatory arthritis. Nat Commun. 2019;10:951.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388:2023–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Rendon A, Schakel Ok. Psoriasis pathogenesis and remedy. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20061475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Valk FM, van Wijk DF, Lobatto ME, Verberne HJ, Storm G, Willems MC, et al. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine. 2015;11:1039–46.

    PubMed 

    Google Scholar
     

  • Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, et al. Nanoparticle affect on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol. 2017;34:3–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20:101–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the analysis and remedy of atherosclerosis. Nat Rev Cardiol. 2021. https://doi.org/10.1038/s41569-021-00629-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paik J, Duggan ST, Keam SJ. Triamcinolone acetonide extended-release: a evaluation in osteoarthritis ache of the knee. Medicine. 2019;79:455–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace. Bioeng Transl Med. 2019;4:e10143.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in scientific trials and translations. Nano Right this moment. 2020;35:100972.

    CAS 

    Google Scholar
     

  • Guo Y, Solar Q, Wu FG, Dai Y, Chen X. Polyphenol-containing nanoparticles: synthesis, properties, and therapeutic supply. Adv Mater. 2021;33:e2007356.

    PubMed 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.