Totally built-in parity–time-symmetric electronics | Nature Nanotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Wang, C. et al. Electromagnetically induced transparency at a chiral distinctive level. Nat. Phys. 16, 334–340 (2020).

    CAS 

    Google Scholar
     

  • Wang, C. et al. Induced transparency by interference or polarization. Proc. Natl Acad. Sci. USA 118, e2012982118 (2021).

    CAS 

    Google Scholar
     

  • Wang, C., Sweeney, W. R., Stone, A. D. & Yang, L. Coherent good absorption at an distinctive level. Science 373, 1261–1265 (2021).

    CAS 

    Google Scholar
     

  • Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent good absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    CAS 

    Google Scholar
     

  • Chong, Y. D., Ge, L. & Stone, A. D. ({{{mathcal{P}}}}{{{mathcal{T}}}}) -symmetry breaking and laser-absorber modes in optical scattering methods. Phys. Rev. Lett. 106, 093902 (2011).

    CAS 

    Google Scholar
     

  • Wan, W. et al. Time-reversed lasing and interferometric management of absorption. Science 331, 889–892 (2011).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Non-Hermitian topological gentle steering. Science 365, 1163–1166 (2019).

    CAS 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    CAS 

    Google Scholar
     

  • Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).

    CAS 

    Google Scholar
     

  • Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016).

    CAS 

    Google Scholar
     

  • Chen, W., Kaya Özdemir, S., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).

    CAS 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187–191 (2017).

    CAS 

    Google Scholar
     

  • Chen, W. et al. Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited]. Photon. Res. 6, A23–A30 (2018).


    Google Scholar
     

  • Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    CAS 

    Google Scholar
     

  • Chang, L. et al. Parity–time symmetry and variable optical isolation in lively–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    CAS 

    Google Scholar
     

  • Xu, X., Liu, Y., Solar, C. & Li, Y. Mechanical ({{{mathcal{P}}}}{{{mathcal{T}}}}) symmetry in coupled optomechanical methods. Phys. Rev. A 92, 013852 (2015).


    Google Scholar
     

  • Xu, X., Li, Y., Chen, A. & Liu, Y. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical methods. Phys. Rev. A 93, 023827 (2016).


    Google Scholar
     

  • Zhang, J. & Yao, J. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. https://doi.org/10.1126/sciadv.aar6782 (2018).

  • Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based mostly on parity-time symmetry. Nat. Commun. 6, 5905 (2015).


    Google Scholar
     

  • Zhu, X., Ramezani, H., Shi, C., Zhu, J. & Zhang, X. ({{{mathcal{P}}}}{{{mathcal{T}}}})-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).


    Google Scholar
     

  • Shao, L. et al. Non-reciprocal transmission of microwave acoustic waves in nonlinear parity–time symmetric resonators. Nat. Electron. 3, 267–272 (2020).


    Google Scholar
     

  • Schindler, J. et al. ({{{mathcal{P}}}}{{{mathcal{T}}}})-symmetric electronics. J. Phys. A 45, 444029 (2012).


    Google Scholar
     

  • Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental examine of lively LRC circuits with ({{{mathcal{P}}}}{{{mathcal{T}}}}) symmetries. Phys. Rev. A 84, 040101 (2011).


    Google Scholar
     

  • Lin, Z., Schindler, J., Ellis, F. M. & Kottos, T. Experimental statement of the twin conduct of ({{{mathcal{P}}}}{{{mathcal{T}}}})-symmetric scattering. Phys. Rev. A 85, 050101 (2012).


    Google Scholar
     

  • Assawaworrarit, S., Yu, X. & Fan, S. Strong wi-fi energy switch utilizing a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    CAS 

    Google Scholar
     

  • Assawaworrarit, S. & Fan, S. Strong and environment friendly wi-fi energy switch utilizing a switch-mode implementation of a nonlinear parity–time symmetric circuit. Nat. Electron. 3, 273–279 (2020).


    Google Scholar
     

  • Dong, Z., Li, Z., Yang, F., Qiu, C.-W. & Ho, J. S. Delicate readout of implantable microsensors utilizing a wi-fi system locked to an distinctive level. Nat. Electron. 2, 335–342 (2019).


    Google Scholar
     

  • Stegmaier, A. et al. Topological defect engineering and ({{{mathcal{P}}}}{{{mathcal{T}}}})-symmetry in non-Hermitian electrical circuits. Phys. Rev. Lett. 126, 215302 (2021).

    CAS 

    Google Scholar
     

  • Liu, S. et al. Achieve- and loss-induced topological insulating part in a non-Hermitian electrical circuit. Phys. Rev. Appl. 13, 014047 (2020).

    CAS 

    Google Scholar
     

  • Zhang, L. et al. Demonstration of topological wi-fi energy switch. Sci. Bull. 66, 974–980 (2021).


    Google Scholar
     

  • Chen, P.-Y. et al. Generalized parity–time symmetry situation for enhanced sensor telemetry. Nat. Electron. 1, 297–304 (2018).


    Google Scholar
     

  • Liu, Y., Zhang, J. & Peng, L.-M. Three-dimensional integration of plasmonics and nanoelectronics. Nat. Electron. 1, 644–651 (2018).


    Google Scholar
     

  • Nagulu, A., Reiskarimian, N. & Krishnaswamy, H. Non-reciprocal electronics based mostly on temporal modulation. Nat. Electron. 3, 241–250 (2020).

    CAS 

    Google Scholar
     

  • Pozar, D. M. Microwave Engineering 4th edn (John Wiley & Sons, 2012).

  • Chen, W., Leykam, D., Chong, Y. & Yang, L. Nonreciprocity in artificial photonic supplies with nonlinearity. MRS Bull. 43, 443–451 (2018).

    CAS 

    Google Scholar
     

  • Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    CAS 

    Google Scholar
     

  • Schneider, G. J., Murakowski, J. A., Schuetz, C. A., Shi, S. & Prather, D. W. Radiofrequency signal-generation system with over seven octaves of steady tuning. Nat. Photon. 7, 118–122 (2013).

    CAS 

    Google Scholar
     

  • Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based mostly on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).


    Google Scholar
     

  • Razavi, B. A 300 GHz basic oscillator in 65 nm CMOS expertise. IEEE J. Strong State Circuits 46, 894–903 (2011).


    Google Scholar
     

  • Li, Z. & O, Okay. Okay. A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator. IEEE J. Strong State Circuits 40, 1296–1302 (2005).


    Google Scholar
     

  • Chen, Y. & Mouthaan, Okay. Wideband varactorless LC VCO utilizing a tunable negative-inductance cell. IEEE Trans. Circuits Syst. I 57, 2609–2617 (2010).


    Google Scholar
     

  • Djurhuus, T., Krozer, V., Vidkjaer, J. & Johansen, T. Okay. Nonlinear evaluation of a cross-coupled quadrature harmonic oscillator. IEEE Trans. Circuits Syst. I 52, 2276–2285 (2005).


    Google Scholar
     

  • Bender, N. et al. Commentary of uneven transport in buildings with lively nonlinearities. Phys. Rev. Lett. 110, 234101 (2013).

    CAS 

    Google Scholar
     

  • Ge, L., Chong, Y. D. & Stone, A. D. Conservation relations and anisotropic transmission resonances in one-dimensional ({{{mathcal{P}}}}{{{mathcal{T}}}})-symmetric photonic heterostructures. Phys. Rev. A 85, 023802 (2012).


    Google Scholar
     

  • Helmy, A. A. et al. A self-sustained CMOS microwave chemical sensor utilizing a frequency synthesizer. IEEE J. Strong State Circuits 47, 2467–2483 (2012).


    Google Scholar
     

  • Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    CAS 

    Google Scholar
     

  • Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    CAS 

    Google Scholar
     

  • Reiskarimian, N. & Krishnaswamy, H. Magnetic-free non-reciprocity based mostly on staggered commutation. Nat. Commun. 7, 11217 (2016).

    CAS 

    Google Scholar
     

  • Wang, Z. et al. Gyrotropic response within the absence of a bias subject. Proc. Natl Acad. Sci. USA 109, 13194–13197 (2012).

    CAS 

    Google Scholar
     

  • Zang, J., Alvarez-Melcon, A. & Gomez-Diaz, J. Nonreciprocal phased-array antennas. Phys. Rev. Appl. 12, 054008 (2019).

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.