Ultrasound and nanomaterial: an environment friendly pair to struggle most cancers | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Lewandowska AM, Rudzki M, Rudzki S, Lewandowski T, Laskowska B. Environmental danger components for most cancers—evaluate paper. Ann Agric Environ Med. 2019;16:1–7.


    Google Scholar
     

  • Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2020. Ca Most cancers J Clin. 2020;70:7–30.

    PubMed 

    Google Scholar
     

  • Wolfram J, Ferrari M. Scientific most cancers nanomedicine. Nano At present. 2019;25:85–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alphandéry E. Biodistribution and concentrating on properties of iron oxide nanoparticles for therapies of most cancers and iron anemia illness. Nanotoxicology. 2019;13:573–96.

    PubMed 

    Google Scholar
     

  • Duan L, Yang L, Jin J, Yang F, Liu D, Hu Ok, Wang Q, Yue Y, Gu N. Micro/nano-bubble-assisted ultrasound to reinforce the EPR impact and potential theranostic functions. Theranostics. 2020;10:462–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang N, Li J, Hou R, Zhang J, Wang P, Liu X, Zhang Z. Bubble-generating nano-lipid carriers for ultrasound/CT imaging-guided environment friendly tumor remedy. Int J Pharm. 2017;534:251–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Tran VL, Novell A, Tournier N, Gerstenmayer M, Schweitzer-Chaputa A, Mateos C, Jego B, Bouleau A, Nozach H, Winkeler A, Kuhnast B, Larrat B, Truillet C. Affect of blood-brain barrier permeabilization induced by ultrasound related to microbubbles on the mind supply and kinetics of cetuximab: an immunoPET research utilizing 89Zr-cetuximab. J Management Launch. 2020;328:304–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Oberli MA, Schoellhammer CM, Langer R, Blankschtein D. Ultrasound-enhanced transdermal supply: latest advances and future challenges. Ther Deliv. 2014;7:843–57.


    Google Scholar
     

  • Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Nanoparticle-assisted ultrasound: a particular concentrate on sonodynamic remedy towards most cancers. Chem Eng J. 2018;340:155–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han X, Wang R, Xu J, Chen Q, Liang C, Chen J, Zhao J, Chu J, Fan Q, Archibong E, Jiang L, Wang C, Liu Z. In situ thermal ablation of tumors together with nano-adjuvant and immune checkpoint blockade to inhibit most cancers metastasis and recurrence. Biomaterials. 2019;224:119490.

    CAS 
    PubMed 

    Google Scholar
     

  • Timin AS, Muslimov AR, Lepik KV, Okilova MV, Tcvetkov NY, Shakirova AI, Afanasyev BV, Gorin DA, Sukhorukov GB. Intracellular breakable and ultrasound-responsive hybrid microsized containers for selective drug launch into cancerous cells. Half Half Syst Charact. 2017;34:1600417.


    Google Scholar
     

  • Elhelf IAS, Albahar H, Shah U, Otoe A, Cressman E, Almekkawy M. Excessive depth targeted ultrasound: the basics, scientific functions and analysis developments. Diagn Interv Imaging. 2018;99:349–59.

    PubMed 

    Google Scholar
     

  • Wooden AKW, Sehgal CM. A evaluate of low-intensity ultrasound for most cancers remedy. Ultrasound Med Biol. 2015;41:905–28.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Bijgaart RJE, Eikelenboom DC, Hoogenboom M, Fütterer JJ, Den Brok MH, Adema GJ. Thermal and mechanical high-intensity targeted ultrasound: views on tumor ablation, immune results and mixture methods. Most cancers Immunol Immunother. 2017;66:247–58.

    PubMed 

    Google Scholar
     

  • Copelan A, Hartman J, Chehab M, Venkatesan AM. Excessive-intensity targeted ultrasound: present standing for image-guided remedy. Semin Interv Radiol. 2015;32:398–415.


    Google Scholar
     

  • Ying Z, Keserci B, Yang X, Wang X. Volumetric MR-guided high-intensity targeted ultrasound ablation to deal with uterine fibroids by the stomach scars. J Therapeutic Ultrasound. 2015;3(Suppl 1):88.


    Google Scholar
     

  • Tung CH, Han MS, Kim Y, Qi J, Brian E. O’Neill BE, Tumor ablation utilizing low-intensity ultrasound and sound excitable drug. J Management Launch. 2017;258:67–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson TR, Fowlkes JB, Abramowicz JS, Church CC. Ultrasound biosafety concerns for the practising sonographer and sonologist. J Ultrasound Med. 2009;28:139–50.

    PubMed 

    Google Scholar
     

  • Shung KK. Excessive frequency ultrasonic imaging. J Med Ultrasound. 2009;17:25–30.

    PubMed 

    Google Scholar
     

  • Carovac A, Smajlovic F, Junuzovic D. Utility of ultrasound in medication. AIDS Affected person Care STDs. 2011;19:168–71.


    Google Scholar
     

  • Mason TJ. Therapeutic ultrasound an summary. Ultrason Sonochem. 2011;18:847–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Schoellhammer CM, Traverso G. Low-frequency ultrasound for drug supply within the gastrointestinal tract. Professional Opin Drug Deliv. 2016;13:1045–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fomenko A, Chen KHS, Nankoo JF, Saravanamuttu J, Wang Y, El-Baba M, Xia X, Seerala SS, Hynynen Ok, Lozano AM, Chen R. Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and habits. eLife. 2020;9: e54497. https://doi.org/10.7554/eLife.54497.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai W, Lv W, Feng Y, Yang H, Zhang Y, Yang G, Duan Y, Wang J. The therapeutic impact in gliomas of nanobubbles carrying siRNA mixed with ultrasound-targeted destruction. Int J Nanomed. 2018;13:6791–807.

    CAS 

    Google Scholar
     

  • Duan S, Guo L, Shi D, Shang M, Meng D, Li J. Growth of a novel folate-modified nanobubbles with improved concentrating on potential to tumor cells. Ultrason Sonochem. 2017;37:235–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu R, Tang J, Xu Y, Dai Z. Bioluminescence imaging of irritation in vivo based mostly on bioluminescence and fluorescence resonance vitality switch utilizing nanobubble ultrasound distinction agent. ACS Nano. 2019;13:5124–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Anton N, Parlog A, About GB, Attia MF, Wattenhofer-Donzé M, Jacobs H, Goncalves I, Robinet E, Sorg T, Vandamme TF. Non-invasive quantitative imaging of hepatocellular carcinoma development in mice by micro-CT utilizing livertargeted iodinated nano-emulsions. Sci Rep. 2017;7:13935.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao S, Cheng X, Li J. Lipid nanobubbles as an ultrasound-triggered artesunate supply system for imaging-guided, tumor-targeted chemotherapy. Onco Targets Ther. 2019;12:1841–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Yu B, Lia C, Xu M, Cao Z, Xie X, Wang W, Liu J. Ultrasound triggered phase-change nanodroplets for doxorubicin prodrug supply and ultrasound analysis: an in vitro research. Colloids Surf B. 2019;174:416–25. https://doi.org/10.1016/j.colsurfb.2018.11.046.

    CAS 
    Article 

    Google Scholar
     

  • Track X, Feng L, Liang C, Yang Ok, Liu Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to beat hypoxia-associated resistance in most cancers therapies. Nano Lett. 2016;16:6145–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Tang W, Yang Z, Wang S, Wang Z, Track J, Yu G, Fan W, Dai Y, Wang J, Shan L, Niu G, Fan Q, Chen X. Natural semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational most cancers remedy. ACS Nano. 2018;12:2610–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Bae YJ, Yoon YI, Yoon TJ, Lee HJ. Ultrasound-guided supply of siRNA and a chemotherapeutic drug through the use of microbubble complexes in vitro and in vivo evaluations in a prostate most cancers mannequin. Korean J Radiol. 2016;17:497–508.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews LE, Chan MH, Liu RS. Nano-lipospheres as acoustically lively ultrasound distinction brokers: evolving tumor imaging and remedy approach. Nanotechnology. 2019;30:182001.

    CAS 
    PubMed 

    Google Scholar
     

  • Baghbani F, Chegeni M, Moztarzade F, Hadian-Ghazvini S, Raz M. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided good supply of an anticancer agent: curcumin. Mater Sci Eng, C. 2017;74:186–93.

    CAS 

    Google Scholar
     

  • Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E. Drug supply methods for platinum-based chemotherapy. ACS Nano. 2017;11:8560–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim D, Lee SS, Yoo WY, Moon H, Cho A, Park SY, Kim YS, Kim HR, Lee HJ. Mixture remedy with doxorubicin-loaded lowered albumin nanoparticles and targeted ultrasound in mouse breast most cancers xenografts. Prescription drugs. 2020;13:235.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Kim D, Han J, Park SY, Kim H, Park JH, Lee HJ. Antitumor efficacy of targeted ultrasound-MFL nanoparticles mixture remedy in mouse breast most cancers xenografts. Supplies. 2020;13:1099.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Lee H, Han J, Shin H, Han H, Na Ok, Kim H. Mixture of chemotherapy and photodynamic remedy for most cancers therapy with sonoporation results. J Management Launch. 2018;283:190–9. https://doi.org/10.1016/j.jconrel.2018.06.008.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li W, Hou W, Guo X, Luo L, Li Q, Zhu C, Yang J, Zhu J, Du Y, You J. Temperature-controlled, phase-transition ultrasound imaging-guided photothermal-chemotherapy triggered by NIR mild. Theranostics. 2018;8:3059–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Yang F, Yuan C, Li M, Wang T, Chen B, Jin J, Zhao P, Tong J, Luo S, Gu N. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided most cancers theranostics. ACS Nano. 2017;11:1509–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Armanetti P, Pocoví-Martínez S, Flori A, Avigo C, Cassano D, Menichetti L, Voliani V. Twin photoacoustic/ultrasound multi-parametric imaging from ardour fruit-like nano-architectures, nanomedicine: nanotechnology. Biol Med. 2018;14:1787–95.

    CAS 

    Google Scholar
     

  • Chen J, Luo H, Liu Y, Zhang W, Li H, Luo T, Zhang Ok, Zhao Y, Liu J. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic therapy of pancreatic most cancers. ACS Nano. 2017;11:12849–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Peng X, Qian Ok, Ma Y, Wan J, Li H, Zhang H, Zhou G, Xiong B, Zhao Y, Zheng C, Yang X. Temperature delicate p(N-isopropylacrylamideco- acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography. J Mater Chem B. 2017;5:907–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Mai X, Chang Y, You Y, He L, Chen T. Designing clever nano-bomb with on demand site-specific drug burst launch to synergize with high-intensity targeted ultrasound most cancers ablation. J Contr Launch. 2020;S0168–3659(20):30567–8.


    Google Scholar
     

  • Beik J, Abed Z, Ghadimi-Daresajini A, Nourbakhsh M, Shakeri-Zadeh A, Ghasemid MS, Shiran MB. Measurements of nanoparticle-enhanced heating from 1 MHz ultrasound in answer and in mice bearing CT26 colon tumors. J Therm Biol. 2016;62:84–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Devarakonda SB, Myers MR, Lanier M, Dumoulin C, Banerjee RK. Evaluation of gold nanoparticle-mediated-enhanced hyperthermia utilizing MR-guided high-intensity targeted ultrasound ablation process. Nano Lett. 2017;17:2532–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, Chan CU, Gu Q, Lin X, Zhang W, Yeo DCL, Alsema AM, Arora M, Chong MSK, Shi P, Ohl CD, Xu C. Managed nanoparticle launch from secure magnetic microbubble oscillations. NPG Asia Mater. 2016;8:e260.

    CAS 

    Google Scholar
     

  • Wang Y, Zaytsev ME, The HL, Eijkel JCT, Zandvliet HJW, Zhang X, Lohse D. Vapor and gas-bubble development dynamics round laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano. 2017;11:2045–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G, Li Y. Energetic concentrating on theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided targeted ultrasound ablation of lung most cancers. Biomaterials. 2017;127:25–35. https://doi.org/10.1016/j.biomaterials.2017.02.037.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi J, Liu W, Fu Y, Yin N, Zhang H, Chang J, Zhang Z. “US-detonated nano bombs” facilitate concentrating on therapy of resistant breast most cancers. J Management Launch. 2018;274:9–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Deepagan VG, You DG, Um W, Ko H, Kwon S, Choi KY, Yi GR, Lee JY, Lee DS, Kim Ok, Kwon IC, Park JH. Lengthy-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of most cancers. Nano Lett. 2016;16:6257–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Gong F, Cheng L, Yang N, Betzer O, Feng L, Zhou Q, Li Y, Chen R, Popovtzer R, Liu Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic most cancers remedy. Adv Mater. 2019;31:1900730.


    Google Scholar
     

  • Yu X, Li A, Zhao C, Yang Ok, Chen X, Li W. Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano. 2017;11:3990–4001.

    CAS 
    PubMed 

    Google Scholar
     

  • Ancona A, Troia A, Garino N, Dumontel B, Cauda V, Canavese G. Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation in the direction of echographic imaging. Ultrasonics Sonochem. 2020;67:105132.

    CAS 

    Google Scholar
     

  • Fathi P, Knox HJ, Sar D, Tripathi I, Ostadhossein F, Misra SK, Esch MB, Chan J, Pan D. Biodegradable biliverdin nanoparticles for environment friendly photoacoustic imaging. ACS Nano. 2019;13:7690–704.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Bai L, Guo Ok, Jia Y, Zhang Ok, Liu Q, Wang P, Wang X. Targeted ultrasound-augmented concentrating on supply of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic most cancers remedy. Theranostics. 2019;9:5261–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gujrati V, Prakash J, Malekzadeh-Najafabadi J, Stiel A, Klemm U, Mettenleiter G, Aichler M, Walch A, Ntziachristos V. Bioengineered bacterial vesicles as organic nanoheaters for optoacoustic imaging. Nat Commun. 2019;10:1114.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakshmanan A, Farhadi A, Nety SP, Lee-Gosselin A, Bourdeau RW, Maresca D, Shapiro MG. Molecular engineering of acoustic protein nanostructures. ACS Nano. 2016;10:7314–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro MG, Goodwill PW, Neogy A, Yin M, Stuart F, Schaffer DV, Conolly SM. Biogenic gasoline nanostructures as ultrasonic molecular reporters. Nat Nanotechnol. 2014;4:311–6. https://doi.org/10.1038/nnano.2014.32.

    CAS 
    Article 

    Google Scholar
     

  • Li WP, Su CH, Chang YC, Lin YJ, Yeh CS. Ultrasound-induced reactive oxygen species mediated remedy and imaging utilizing a fenton response activable polymersome. ACS Nano. 2016;10:2017–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Wang J, Chen Z, Hu Q, Wang C, Yan J, Dotti G, Huang P, Gu Z. Engineering PD-1-presenting platelets for most cancers immunotherapy. Nano Lett. 2018;18:5716–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Yin T, Li B, Zheng R, Qiu C, Lam KS, Zhang Q, Shuai X. Dimension-modulable nanoprobe for high-performance ultrasound imaging and drug supply towards most cancers. ACS Nano. 2018;12:3449–60. https://doi.org/10.1021/acsnano.8b00076.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Medina SH, Michie MS, Miller SE, Schnermann MJ, Schneider JP. Fluorous phase-directed peptide meeting affords nano-peptisomes able to ultrasound-triggered mobile supply. Angew Chem Int Ed Engl. 2017;56:11404–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai C, Zhang S, Liu Z, Wu R, Chen Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano. 2017;11:9467–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Ratnayaka S, Alford A, Kozlovskaya V, Liu F, Xue B, Hoyt Ok, Kharlampieva E. Theranostic multilayer capsules for ultrasound imaging and guided drug supply. ACS Nano. 2017;11:3135–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Park S, Yoo H, Park S, Kim J, Yum Ok, Kim Ok, Kim H. Overcoming anticancer resistance by photodynamic therapy-related efflux pump deactivation and ultrasound-mediated improved drug supply effectivity. Nano Convergence. 2020;7:30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Zhou SF, Su L, Track J. Fuel-mediated most cancers bioimaging and remedy. ACS Nano. 2019;13:10887–917.

    CAS 
    PubMed 

    Google Scholar
     

  • Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visible and acoustic monitoring of passive and lively supply of nanobubbles to tumors. Theranostics. 2020;10:11690–706.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pellow C, O’Reilly MA, Hynynen Ok, Zheng G, Goertz DE. Simultaneous intravital optical and acoustic monitoring of ultrasound-triggered nanobubble era and extravasation. Nano Lett. 2020;20:4512–9. https://doi.org/10.1021/acs.nanolett.0c01310.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xie W, Zhu S, Yang B, Chen C, Chen S, Liu Y, Nie X, Hao L, Wang Z, Solar J, Chang S. The destruction of laser-induced phase-transition nanoparticles triggered by low-intensity ultrasound: an revolutionary modality to reinforce the immunological therapy of ovarian most cancers cells. Int J Nanomedicine. 2019;14:9377–93. https://doi.org/10.2147/IJN.S208404.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu P, Chen Y, Shi J. Nanoenzyme-augmented most cancers sonodynamic remedy by catalytic tumor oxygenation. ACS Nano. 2018;12:3780–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Liang S, Deng X, Chang Y, Solar C, Shao S, Xie Z, Xiao X, Ma P, Zhang H, Cheng Z, Lin J. Clever hole Pt-CuS janus structure for synergistic catalysis-enhanced sonodynamic and photothermal most cancers remedy. Nano Lett. 2019;19:4134–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Abenojar EC, Bederman I, de Leon AC, Zhu J, Hadley J, Kolios MC, Exner AA. Theoretical and experimental gasoline quantity quantification of micro- and nanobubble ultrasound distinction brokers. Pharmaceutics. 2020;12:208.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Ishijima A, Minamihata Ok, Yamaguchi S, Yamahira S, Ichikawa R, Kobayashi R, Iijima M, Shibasaki Y, Azuma T, Nagamune T, Sakuma I. Selective intracellular vaporization of antibody-conjugated phasechange nano-droplets in vitro. Sci Rep. 2017;7:44077.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Lin Z, Zheng Y, Track J, Li J, Zeng Y, Liu X. Ultrasound-driven biomimetic nanosystem suppresses tumor development and metastasis by sonodynamic remedy, CO remedy, and indoleamine 2,3-dioxygenase inhibition. ACS Nano. 2020;14:8985–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Alphandery E. Iron oxide nanoparticles for therapeutic functions. Drug Discov At present. 2020;25:141–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Alphandéry E. A dialogue on present nanomedicine regulation: progress and pitfalls. Appl Mater At present. 2019;17:193–205.


    Google Scholar
     

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges in the direction of focused supply of most cancers therapeutics. Nat Commun. 2018;9:1410.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatnagar S, Schiffter H, Coussios C-C. Exploitation of acoustic cavitation-induced microstreaming to reinforce molecular transport. J Pharm Sci. 2014;103:1903–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Bhatnagar S, Kwan JJ, Shah AR, Coussios CC, Carlisle RC. Exploitation of sub-micron cavitation nuclei to reinforce ultrasound-mediated transdermal transport and penetration of vaccines. J Management Launch. 2016;238:22–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Mitragotri S. Transdermal drug supply utilizing low-frequency sonophoresis BioMEMS and biomedical nanotechnology: quantity III therapeutic micro/nanotechnology. Ferrari M, Desai T, Bhatia S, editors. Springer; US, Boston. 2007; 223–236.

  • Boucaud A, Montharu J, Machet L, Arbeille B, Machet MC, Patat F, Vaillant L. Scientific histologic, and electron microscopy research of pores and skin uncovered to low-frequency ultrasound. Anatomical Document. 2001;264:114–9.

    CAS 

    Google Scholar
     

  • Simonin JP. On the mechanisms of in vitro and in vivo phonophoresis. J Management Launch. 1995;33:125–41.

    CAS 

    Google Scholar
     

  • Alvarez-Román R, Merino G, Kalia YN, Naik A, Man RH. Pores and skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci. 2003;92:1138–46.

    PubMed 

    Google Scholar
     

  • Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, Smith NB, Robertson GP. Concentrating on V600EB-Raf and Akt3 utilizing nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion growth. Most cancers Res. 2008;68:7638–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ljubimova JY, Solar T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nanodelivery programs for selective imaging and therapy of mind tumors. Adv Drug Deliv Rev. 2017;113:177–200.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deal with LH, McDannold N, Vykhodtseva N, Zhang Y, Tam Ok, Hynynen Ok. Focused supply of doxorubicin to the rat mind at therapeutic ranges utilizing MRI-guided targeted ultrasound. Int J Most cancers. 2007;121:901–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-enhanced drug supply and therapeutic ultrasound for most cancers therapy and past. Entrance Bioeng Biotechnol. 2019. https://doi.org/10.3389/fbioe.2019.00324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamran Kamrava S. Nanotechnology in hyperthermia most cancers remedy: from elementary ideas to superior functions. J Management Launch. 2016;235:205–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Sviridov AP, Andreev VG, Ivanova EM, Osminkina LA, Tamarov Ok, Timoshenko VY. Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Appl Phys Lett. 2013;103:193110.


    Google Scholar
     

  • Landon CD, Park JY, Needham D, Dewhirst MW. Nanoscale drug supply and hyperthermia: the supplies design and preclinical and scientific testing of low temperature-sensitive liposomes utilized in mixture with gentle hyperthermia within the therapy of native most cancers. Open Nanomed J. 2011;1:38–64.


    Google Scholar
     

  • Unezaki S, Maruyama Ok, Takahashi N, et al. Enhanced supply and antitumor exercise of doxorubicin utilizing long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol together with native hyperthermia. Pharm Res. 1994;11:1180–5. https://doi.org/10.1023/A:1018949218380.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A brand new temperature-sensitive liposome to be used with gentle hyperthermia: characterization and testing in a human tumor xenograft mannequin. Can Res. 2000;60:1197–201.

    CAS 

    Google Scholar
     

  • Banno B, Ickenstein LM, Chiu GNC, Bally MB, Thewalt J, Temporary E, Wasan EK. The practical roles of poly(ethylene glycol)-lipid and lysolipid within the drug retention and launch from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci. 2010;99(5):2295–308.

    CAS 
    PubMed 

    Google Scholar
     

  • Marzban E, Alavizadeh SH, Ghiadi M, Khoshangosht M, Khashayarmanesh Z, Abbasi A, Jaafari MR. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes by way of incorporation of various DPPG ratios: in vitro and in vivo research. Colloids Surf B Biointerfaces. 2015;136:885–91. https://doi.org/10.1016/j.colsurfb.2015.10.046.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Şen T, Tüfekçioğlu O, Koza Y. Mechanical index. Anatol J Cardiol. 2015;15:334–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung YE, Kim KW. Distinction-enhanced ultrasonography: advance and present standing in stomach imaging. Ultrasonography. 2015;34:3–18.

    PubMed 

    Google Scholar
     

  • Yang X, Jo J. Enhanced cavitation through the use of two consecutive ultrasound waves at completely different frequencies. Appl Phys Lett. 2014;105:193701.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canaparo R, Varchi G, Ballestri M, Foglietta F, Sotgiu G, Guerrini A, Francovich A, Civera P, Frairia R, Serpe L. Polymeric nanoparticles improve the sonodynamic exercise of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma mannequin. Int J Nanomed. 2013;8:4247–63.


    Google Scholar
     

  • Kooiman L, Roovers S, Langeveld S, Kleven RT, Dewitte H, O’reilly MA, Escoffre JM, Bouakaz A, Verweij M, Hynynen Ok, Lentacker I, Stride E, Holland CK. Ultrasound-responsive cavitation nuclei for remedy and drug supply. Ultrasound Med Biol. 2020;46:1296–325.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coussios CC, Farny CH, Ter Haar G, Roy RA. Function of acoustic cavitation within the supply and monitoring of most cancers therapy by high-intensity targeted ultrasound (HIFU). Int J Hyperthermia. 2007;23:105–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu SY, Sanchez CS, Samiotaki G, Buch A, Ferrera VP, Konofagou EE. Characterizing targeted ultrasound mediated drug supply to the heterogeneous primate mind in vivo with acoustic monitoring. Sci Rep. 2016;6:37094. https://doi.org/10.1038/srep37094.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wischhusen J, Padilla F. Ultrasound-targeted microbubble destruction (UTMD) for localized drug supply into tumor tissue. IRBM. 2019;40:10–5.


    Google Scholar
     

  • Beguin E, Shrivastava S, Dezhkunov NV, McHale AP, Callan JF, Stride E. Direct proof of multibubble sonoluminescence utilizing therapeutic ultrasound and microbubbles. ACS Appl Mater Interfaces. 2019;11:19913–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang CC, Wang CX, Kuan CY, Chi CY, Chen CY, Lin YY, Chen GS, Hou CG, Lin FH. Utilizing C-doped TiO2 nanoparticles as a novel sonosensitizer for most cancers therapy. Antioxidants. 2020;9:880.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Snipstad S, Sulheim E, Davies CDL, Moonen C, Storm G, Kiessling F, Schmid R, Lammers T. Sonopermeation to enhance drug supply to tumors: from elementary understanding to scientific translation. Professional Opin Drug Deliv. 2018;15:1249–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: mechanistic insights and ongoing challenges for gene switch. Gene. 2013;525:191–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury SM, Lee T, Willmann JK. Ultrasound-guided drug supply in most cancers. Ultrasonography. 2017;36:171–84.


    Google Scholar
     

  • Postema M, Gilja OH. Ultrasound-directed drug supply. Curr Pharm Biotechnol. 2007;8(6):355–61. https://doi.org/10.2174/138920107783018453.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fan Z, Kumon RE, Deng CX. Mechanisms of microbubble-facilitated sonoporation for drug and gene supply. Ther Deliv. 2014;5:467–86. https://doi.org/10.4155/tde.14.10.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Khokhlova TD, Haider Y, Hwang JH. Therapeutic potential of ultrasound microbubbles in gastrointestinal oncology: latest advances and future prospects. Ther Adv Gastroenterol. 2015;8:384–94.

    CAS 

    Google Scholar
     

  • Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene supply. Adv Drug Deliv Rev. 2008;60:1153–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindner JR. Microbubbles in medical imaging: present functions and future instructions. Nat Rev Drug Discov. 2004;3:527–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug supply—a basic evaluate. Professional Opin Drug Deliv. 2004;1:37–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blomley MJK, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO. Microbubble distinction brokers: a brand new period in ultrasound. BMJ. 2001;322:1222–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raisinghani A, DeMaria AN. Bodily ideas of microbubble ultrasound distinction brokers. Am J Cardiol. 2002;90:3J-7J.

    PubMed 

    Google Scholar
     

  • Ke H, Wang J, Dai Z, Jin Y, Qu E, Xing Z, Guo C, Yue X, Liu J. Gold-Nanoshelled microcapsules: atheranostic agent for ultrasound distinction imaging and photothermal remedy. Angew Chem Int Ed. 2011;50:3017–21.

    CAS 

    Google Scholar
     

  • Ke H, Yue X, Wang J, Xing S, Zhang Q, Dai Z, Tian J, Wang S, Jin Y. Gold nanoshelled liquid perfl uorocarbon nanocapsules for mixed twin modal ultrasound/CT imaging and photothermal remedy of most cancers. Small. 2014;6:1220–7.


    Google Scholar
     

  • Forbes MM, Steinberg RL, O’Brien WD. Frequency-dependent analysis of the position of definity in producing sonoporation of Chinese language hamster ovary cells. J Ultrasound Med. 2011;30:61–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang Ok, Zeng D, Shi J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials. 2013;34:2057–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Citadel J, Kotopoulis S, Forsberg F. Sonoporation for augmenting chemotherapy of pancreatic ductal adenocarcinoma. Strategies Mol Biol. 2020;2059:191–205. https://doi.org/10.1007/978-1-4939-9798-5_9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Langer R. Optimizing the supply of most cancers medication that block angiogenesis. Sci Transl Med. 2010;2:1513.


    Google Scholar
     

  • Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug supply and enhanced chemotherapy. Proc Natl Acad Sci USA. 2014;111:9762–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li P, Zheng Y, Ran H, Tan J, Lin Y, Zhang Q, Ren J, Wang Z. Ultrasound triggered drug launch from 10-hydroxycamptothecin-loaded phospholipid microbubbles for focused tumor remedy in mice. J Managed Launch. 2012;162:349–54.

    CAS 

    Google Scholar
     

  • Yoon YI, Yoon T-J, Lee HJ. Optimization of ultrasound parameters for microbubble-nanoliposome complex-mediated supply. Ultrasonography. 2015;34:297–303.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesham GM, Ana MM, Ghaleb AH. Evaluate on triggered liposomal drug supply with a concentrate on ultrasound. Curr Most cancers Drug Targets. 2015;15:282–313.


    Google Scholar
     

  • Ahmed SE, Martins AM, Husseini GA. Using ultrasound to launch chemotherapeutic medication from micelles and liposomes. J Drug Concentrating on. 2015;23:16–42.

    CAS 

    Google Scholar
     

  • Kosheleva OK, Lai TC, Chen NG, Hsiao M, Chen CH. Selective killing of most cancers cells by nanoparticle-assisted ultrasound. J Nanobiotechnol. 2016;14:46. https://doi.org/10.1186/s12951-016-0194-9.

    CAS 
    Article 

    Google Scholar
     

  • Cheng CA, Deng T, Lin FC, Cai Y, Zink JI. Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and most cancers drug supply. Theranostics. 2019;9:3341–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Zhang N, Wang Z, Wu M, Chen Y, Ma M, Chen H, Shi J. Endogenous catalytic era of O2 bubbles for in situ ultrasound-guided excessive depth targeted ultrasound ablation. ACS Nano. 2017;11:9093–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Deng L, O’Reilly MA, Jones RM, An R, Hynynen Ok. A multi-frequency sparse hemispherical ultrasound phased array for microbubble mediated transcranial remedy and simultaneous cavitation mapping. Phys Med Biol. 2016;61:8476–501.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang HJ, Deng Q, An L, Guo M, Yang SP, Liu JG. Tumor cell particular and lysosome-targeted supply of nitric oxide for enhanced photodynamic remedy triggered by 808 nm near-infrared mild. Chem Commun. 2016;52:148–51.

    CAS 

    Google Scholar
     

  • Wan SS, Zeng JY, Cheng H, Zhang XZ. ROS-induced NO era for gasoline remedy and sensitizing photodynamic remedy of tumor. Biomaterials. 2018;185:51–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Ohsawa I, Ishikawa M, Takahashi Ok, Watanabe M, Nishimaki Ok, Yamagata Ok, Katsura Ok, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively lowering cytotoxic oxygen radicals. Nat Med. 2007;13:688–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wan Y, Chen Y, Blum NT, Lin J, Huang P. Ultrasound-enhanced chemo-photodynamic mixture remedy through the use of albumin “nanoglue”-based nanotheranostics. ACS Nano. 2020;14:5560–6556.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Ma H, Wei T, Liang XJ. CO2 gasoline induced drug launch from pH-sensitive liposome to bypass doxorubicin resistant cells. Chem Commun. 2012;48:4869–71.

    CAS 

    Google Scholar
     

  • Min HS, Son S, You DG, Lee TW, Lee J, Lee S, Yhee JY, Lee J, Han MH, Park JH, Kim SH, Choi Ok, Park Ok, Kim Ok, Kwon IC. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug supply. Biomaterials. 2016;108:57–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug supply. Mater At present. 2016;19:274–83.

    CAS 

    Google Scholar
     

  • Hernandez C, Gulati S, Fioravanti G, Stewart PL, Exner AA. Cryo-EM visualization of lipid and polymer-stabilized perfluorocarbon gasoline nanobubbles—a step in the direction of nanobubble mediated drug supply. Sci Rep. 2017;7:13517.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Wang J, Pan J, Zhao F, Kan D, Cheng R, Zhang X, Solar SK. Rhenium sulfide nanoparticles as a biosafe spectral CT distinction agent for gastrointestinal tract imaging and tumor theranostics in vivo. ACS Appl Mater Interfaces. 2019;11:33650–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao Y, Guo L, Li A, Zhang Ok, Liu W, Shi J, Liu J, Zhang Z. US-triggered ultra-sensitive “thrombus constructor” for exact tumor remedy. J Management Launch. 2020;318:136–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Huynh E, Rajora MA, Zheng G. Multimodal micro, nano, and measurement conversion ultrasound brokers for imaging and remedy. WIREs Nanomed Nanobiotechnol. 2016;8:796–813.


    Google Scholar
     

  • Wilson Ok, Homan Ok, Emelianov S. Biomedical photoacoustics past thermal growth utilizing triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun. 2012;3:618.

    PubMed 

    Google Scholar
     

  • Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, Li P, Dong W, Wang Z, Chen Y, Ran H. Drug launch from phase-changeable nanodroplets triggered by low-intensity targeted ultrasound. Theranostics. 2018;8:1327–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loskutova Ok, Grishenkov D, Ghorbani M. Evaluate on acoustic droplet vaporization in ultrasound diagnostics and therapeutics. BioMed Res Int. 2019;2019:1.


    Google Scholar
     

  • Choo S, He B, Duan F. Evaporation of droplet with and with out laser excitation. Appl Therm Eng. 2015;88:341–6.

    CAS 

    Google Scholar
     

  • Rapoport N. Part-shift, stimuli-responsive perfluorocarbon nanodroplets for drug supply to most cancers. WIREs Nanomed Nanobiotechnol. 2012;4:492–510.

    CAS 

    Google Scholar
     

  • Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and focused chemotherapy. Ultrasonics. 2008;48:260–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Huynh E, Leung BYC, Helfield BL, Shakiba M, Gandier JA, Jin CS, Grasp ER, Wilson BC, Goertz DE, Zheng G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol. 2015;10:325–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X. Ultrasound-responsive microbubbles for sonography-guided siRNA supply. Nanomed Nanotechnol Biol Med. 2016;12:1139–49.

    CAS 

    Google Scholar
     

  • Ferrara Ok, Pollard R, Borden M. Ultrasound microbubble distinction brokers: fundamentals and software to gene and drug supply. Annu Rev Biomed Eng. 2007;9:415–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound distinction brokers: present standing and future. Stomach Radiol. 2018;43:762–72.


    Google Scholar
     

  • Christensen-Jeffries Ok, Couture O, Dayton PA, Eldar YC, Hynynen Ok, Kiessling F, O’Reilly M, Pinton GF, Schmitz G, Tang MX, Tanter M, Van Sloun RJG. Tremendous-resolution ultrasound imaging. Ultrasound Med Biol. 2020;46:865–91.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang S, Track P, Trzasko JD, Lowerison M, Huang C, Gong P, Lok UW, Manduca A, Chen S. Kalman filter-based microbubble monitoring for strong super-resolution ultrasound microvessel imaging. IEEE Trans Ultrason Ferroelectr Freq Management. 2020;67:1738–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Lin J, Wang T, Chen X, Huang P. Current advances in photoacoustic imaging for deep-tissue biomedical functions. Therasonics. 2016;6:2394–413.

    CAS 

    Google Scholar
     

  • Cai Y, Liang P, Tang Q, Yang X, Si W, Huang W, Zhang Q, Dong X. Diketopyrrolopyrrole−triphenylamine natural nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor remedy. ACS Nano. 2017;11:1054–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zhang XN, Li XD, Chang J. Multimodality imaging in nanomedicine and nanotheranostics. Most cancers Biol Med. 2016. https://doi.org/10.20892/j.issn.2095-3941.2016.0055.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Han X, Jing X, Chen Y. Development of silica-based micro/nanoplatforms for ultrasound theranostic biomedicine. Adv Well being Mater. 2017;6:1700646.


    Google Scholar
     

  • Kwan JJ, Graham S, Myers R, Carlisle R, Stride E, Coussios CC. Ultrasoundinduced inertial cavitation from gas-stabilizing nanoparticles. Phys Rev E. 2015;92:023019.

    CAS 

    Google Scholar
     

  • Jin Q, Kang ST, Chang YC, Zheng H, Yeh CK. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles underneath pulsed ultrasound stimulation. Ultrason Sonochem. 2016;32:1–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: interplay between microbubbles and cells. Ultrasonics Sonochem. 2020;67:105096.

    CAS 

    Google Scholar
     

  • Chen M, Liang X, Gao C, Zhao R, Zhang N, Wang S, Chen W, Zhao B, Wang J, Dai Z. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal most cancers. ACS Nano. 2018;12:7312–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising methodology for oral most cancers detection and analysis. J Nanobiotechnol. 2018;16:52.


    Google Scholar
     

  • Chen S, Liu Y, Zhu S, Chen C, Xie W, Xiao L, Zhu L, Hao L, Wang Z, Solar J, Chang S. Twin-mode imaging and therapeutic results of drug-loaded phase-transition nanoparticles mixed with near-infrared laser and low-intensity ultrasound on ovarian most cancers. Drug Deliv. 2018;25:1683–93. https://doi.org/10.1080/10717544.2018.1507062.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yildirim A, Shi D, Roy S, Blum NT, Chattaraj R, Cha JN, Goodwin AP. Nanoparticle-mediated acoustic cavitation permits excessive depth targeted ultrasound ablation with out tissue heating. ACS Appl Mater Interfaces. 2018;10:36786–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osminkina LA, Nikolaev AL, Sviridov AP, Andronova NV, Tamarov KP, Gongalsky MB, Kudryavtsevd AA, Treshalinac HM, Timoshenkoa YV. Porous silicon nanoparticles as environment friendly sensitizers for sonodynamic remedy of most cancers. Microporous Mesoporous Mater. 2015;210:169–75.

    CAS 

    Google Scholar
     

  • Racca L, Limongi T, Vighetto V, Dumontel B, Ancona A, Canta M, Canavese G, Garino N, Cauda V. Zinc Oxide nanocrystals and high-energy shock waves: a brand new synergy for the therapy. Entrance Bioeng Biotechnol Nanobiotechnol. 2020;8:577.


    Google Scholar
     

  • Vighetto V, Racca L, Canta M, Matos JC, Dumontel B, Gonçalves MC, Cauda V. Sensible shockwave responsive titania-based nanoparticles for most cancers therapy. Pharmaceutics. 2021;13:1423.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Min HS, You DG, Kim Ok, Kwon IC, Rhima T, Lee KY. Theranostic gas-generating nanoparticles for focused ultrasound imaging and therapy of neuroblastoma. J Management Launch. 2016;223:197–206.

    CAS 
    PubMed 

    Google Scholar
     

  • Xie X, Lin W, Li M, Yang Y, Deng J, Liu H, Chen Y, Fu X, Liu H, Yang Y. Environment friendly siRNA supply utilizing novel cell-penetrating peptide-siRNA conjugate-loaded nanobubbles and ultrasound. Ultrasound Med Biol. 2016;42:1362–74.

    PubMed 

    Google Scholar
     

  • Liu Q, Jiang J, Tang L, Chen M. The impact of low frequency and low depth ultrasound mixed with microbubbles on the sonoporation effectivity of MDA-MB-231. Ann Transl Med. 2020;8:298.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schroeder A, Avnir Y, Weisman S, Najajreh Y, Gabizon A, Talmon Y, Kost J, Barenholz Y. Controlling liposomal drug launch with low frequency ultrasound: mechanism and feasibility. Langmuir. 2007;23:4019–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Bove T, Zawada T, Serup J, Jessen A, Poli M. Excessive-frequency (20-MHz) high-intensity targeted ultrasound (HIFU) system for dermal intervention: preclinical analysis in pores and skin equivalents. Pores and skin Res Technol. 2019;25:217–28.

    PubMed 

    Google Scholar
     

  • Min HS, You DG, Son S, Jeon S, Park JH, Lee S, Kwon IC, Kim Ok. Echogenic glycol chitosan nanoparticles for ultrasound-triggered most cancers theranostics. Theranostics. 2015;5:1402–18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tung YS, Vlachos F, Choi JJ, Deffieux T, Selert Ok, Konofagou EE. In vivo transcranial cavitation threshold detection throughout ultrasound-induced blood–mind barrier opening in mice. Phys Med Biol. 2010;55:6141.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arko D, Sikošeka NC, Kozar N, Sobocanb M, Taka I. The worth of ultrasound-guided surgical procedure for breast most cancers. Eur J Obst Gynecol Reprod Biol. 2017;216:198–203.


    Google Scholar
     

  • Beccaria Ok, Canney M, Bouchoux G, Puget S, Grill J, Carpentier A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the therapy of pediatric mind tumors: a evaluate and views. Neurosurg Focus. 2020;48:E10.

    PubMed 

    Google Scholar
     

  • Chaussy CG, Thuroff S. Excessive-intensity targeted ultrasound for the therapy of prostate most cancers: a evaluate. J Endourol. 2017;31:S30–9.

    PubMed 

    Google Scholar
     

  • Gummadi S, Eisenbrey J, Li J, Li Z, Forsberg F, Lyshchik A, Liu JB. Advances in trendy scientific ultrasound. Audt. 2018;02:051–63.


    Google Scholar
     

  • Rebolj M, Assi V, Brentnall A, Parmar D, Duffy SW. Addition of ultrasound to mammography within the case of dense breast tissue: systematic evaluate and meta-analysis. Br J Most cancers. 2018;118:1559–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sood R, Rositch AF, Shakoor D, Ambinder E, Pool KL, Pollack E, Mollura DJ, Mullen LA, Harvey SC. Ultrasound for breast most cancers detection globally: a scientific evaluate and meta-analysis. J World Oncol. 2019;5:1–17.


    Google Scholar
     

  • Giannella L, Carpini GD, Montik N, Verdecchia V, Puccio F, Di Giuseppe J, Tsiroglou D, Goteri G, Ciavattini A. Ultrasound options of a uterine perivascular epithelioid cell tumor (PEComa): case report and literature evaluate. Diagnostics. 2020;10:553.

    PubMed Central 

    Google Scholar
     

  • Lin CM, Wang CP, Chen CN, Lin CY, Li TY, Chou CH, Hsu YC, Kuo PY, Yang TL, Lou PJ, Ko JY, Chen TC. The applying of ultrasound in detecting lymph nodal recurrence within the handled neck of head and neck most cancers sufferers. Sci Rep. 2017;7:3958.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward RC, Lourenco AP, Mainiero MB. Ultrasound-guided breast most cancers cryoablation. AJR. 2019;213:716–22.

    PubMed 

    Google Scholar
     

  • Peek MCL, Wu F. Excessive-intensity targeted ultrasound within the therapy of breast tumours. Ecancer. 2018;12:794.


    Google Scholar
     

  • Prada F, Kalani MYS, Yagmurlu Ok, Norat P, Del Bene M, DiMeco F, Kassell NF. Purposes of targeted ultrasound in cerebrovascular illnesses and mind tumors. Neurotherapeutics. 2019;16:67–87.

    PubMed 

    Google Scholar
     

  • Testoni SGG, Healey AJ, Dietrich CF, Arcidiacono PG. Systematic evaluate of endoscopy ultrasound-guided thermal ablation therapy for pancreatic most cancers. Endoscopic Ultrasound. 2020;9:83–100.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borden MA, Track KH. Reverse engineering the ultrasound distinction agent. Adv Colloid Interface Sci. 2018;262:39–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimcevski G, Kotopoulis S, Bjånes T, Hoem D, Schjøtt J, Gjertsen BT, Biermann M, Molven A, Sorbye H, McCormack E, Postema M, Gilja OH. A human scientific trial utilizing ultrasound and microbubbles to reinforce gemcitabine therapy of inoperable pancreatic most cancers. J Management Launch. 2016;243:172–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Lyon PC, Griffiths LF, Lee J, Chung D, Carlisle R, Wu F, Middleton MR, Gleeson FV, Coussios CC. Scientific trial protocol for TARDOX: a part I research to research the feasibility of focused launch of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) utilizing targeted ultrasound in sufferers with liver tumours. J Therapeutic Ultrasound. 2017;5:28.


    Google Scholar
     

  • Lang BH, Woo YC, Chiu KWH. Excessive depth targeted ultrasound (HIFU) ablation of benign thyroid nodule is secure and efficacious in sufferers who proceed taking an anti-coagulation or antiplatelet agent within the therapy interval. Int J Hyperth. 2019;36:185–9.

    CAS 

    Google Scholar
     

  • Wu SK, Tsai CL, Huang Y, Hynynen Ok. Targeted ultrasound and microbubbles-mediated drug supply to mind tumor. Pharmaceutics. 2021;13:15.

    CAS 

    Google Scholar
     

  • Grey MD, Lyon PC, Mannaris C, Folkes LK, Stratford M, Dip LC, Chung DYF, Scott S, Anderson M, Goldin R, Carlisle R, Wu F, Middleton MR, Gleeson FV, Coussios CC. Targeted ultrasound hyperthermia for focused drug launch from thermosensitive liposomes: outcomes from a part I trial. Radiology. 2019;291:232–8.

    PubMed 

    Google Scholar
     

  • Zhang Y, Yong L, Luo Y, Ding X, Xu D, Gao X, Yan S, Wang Q, Luo J, Pu D, Zou J. Enhancement of HIFU ablation by sonosensitizer-loading liquid fluorocarbon nanoparticles with pre-targeting in a mouse mannequin. Sci Rep. 2019;9:6982.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peek MCL, Ahmed M, Napoli A, ten Haken B, McWilliams S, Usiskin SI, Pinder SE, van Hemelrijck M, Douek M. Systematic evaluate of high-intensity targeted ultrasound ablation within the therapy of breast most cancers. BJS. 2015;102:873–82.

    CAS 

    Google Scholar
     

  • Luke GP, Hannah AS, Emelianov SY. Tremendous-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Lett. 2016;16:2556–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaczmarek Ok, Hornowski T, Dobosz B, Józefczak A. Affect of magnetic nanoparticles on the targeted ultrasound hyperthermia. Supplies. 2018;11:1607.

    PubMed Central 

    Google Scholar
     

  • Nardecchia S, Sánchez-Moreno P, De Vicente J, Marchal JA, Boulaiz H. Scientific trials of thermosensitive nanomaterials: an summary. Nanomaterials. 2019;9:191.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Morais P, Adachi H, Yu YT. The crucial contribution of pseudouridine to mRNA COVID-19 vaccines. Entrance Cell Dev Biol. 2021; 9.

  • Alphandéry E. Biodistribution and concentrating on properties of iron oxide nanoparticles for therapies of most cancers and iron anemia illness. Nanotoxicology. 2019;13(5):573–96. https://doi.org/10.1080/17435390.2019.1572809.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Maier-Hauff Ok, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy utilizing magnetic nanoparticles mixed with exterior beam radiotherapy: outcomes of a feasibility research on sufferers with glioblastoma multiforme. J Neurooncol. 2007;81:53–60. https://doi.org/10.1007/s11060-006-9195-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hubert V, Dumot C, Ong E, Amaz C, Canet-Soulas E, Chauveau F, Wiart M. MRI coupled with clinically relevant iron oxide nanoparticles reveals choroid plexus involvement in a murine mannequin of neuroinflammation. Sci Rep. 2019;9:10046. https://doi.org/10.1038/s41598-019-46566-1.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC, Tewari AK, Schwartz JA, Canfield SE, George AK, West JL, Halas NJ. Gold nanoshell-localized photothermal ablation of prostate tumors in a scientific pilot system research. Proc Natl Acad Sci. 2019;116(37):18590–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salih M, Ali SM, Jena N, Ananthasubramaniam Ok. Evaluate of ultrasound distinction brokers in present scientific follow with particular concentrate on DEFINITY in cardiac imaging. Future Cardiol. 2021;17(2):197–214. https://doi.org/10.2217/fca-2020-0049.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Abed Z, Beik J, Khoee S, Khoei S, Shakeri-Zadeh A, Shiran MB. Results of ultrasound irradiation on the discharge profile of 5-fluorouracil from magnetic polylactic co-glycolic acid nanocapsules. J Biomed Phys Eng. 2016;6:183–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Tian Y, Shan D, Gong A, Zeng L, Ren W, Xiang L, Gerhard E, Zhao J, Yang J, Wu A. Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound distinction brokers for focused breast most cancers imaging, Biomaterials. 2017;116:106–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Yang Y, Zhang M, Yin L, Tu J, Guo X, Zhang D. Acoustic characterization and enhanced ultrasound imaging of long-circulating lipid-coated microbubbles. J Ultrasound Med. 2018;37:1243–56. https://doi.org/10.1002/jum.14470.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Z, Zhang J, Tian Y, Zhang L, Han X, Wang Q, Cheng W. Focused supply of lowered graphene oxide nanosheets utilizing multifunctional ultrasound nanobubbles for visualization and enhanced photothermal remedy. Int J Nanomed. 2018;13:7859–72.

    CAS 

    Google Scholar
     

  • Ma J, Shen M, Xu CS, Solar Y, Duan YR, Du LF. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound distinction enhanced imaging and antitumor remedy in vitro. Oncotarget. 2016;7:8008–80018.


    Google Scholar
     

  • Qian X, Wang Y, Xu Y, Ma L, Xue N, Jiang Z, Cao Y, Akakuru OU, Li J, Zhang S, Wu A. Energetic concentrating on nano-scale bubbles enhanced ultrasound cavitation chemotherapy in Y1 receptor-overexpressed breast most cancers. J Mater Chem B. 2020;8:6837–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu M, Zhao H, Guo L, Wang Y, Track J, Zhao X, Li C, Hao L, Wang D, Tang J. Ultrasound-mediated nanobubble destruction (UMND) facilitates the supply of A10–3.2 aptamer focused and siRNA-loaded cationic nanobubbles for remedy of prostate most cancers. Drug Supply. 2018;25:226–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zandi A, Khayamian MA, Saghafi M, Shalileh S, Katebi P, Assadi S, Gilani A, Parizi MS, Vanaei S, Esmailinejad MR, Abbasvandi F, Hoseinpour P, Abdolahad M. Microneedle-based era of microbubbles in most cancers tumors to enhance ultrasound-assisted drug supply. Adv Healthcare Mater. 2019;8:1900613.


    Google Scholar
     

  • Zhang S, Guo W, Wei J, Li C, Liang XJ, Yin M. Terrylenediimide-based intrinsic theranostic nanomedicines with excessive photothermal conversion effectivity for photoacoustic imaging-guided most cancers remedy. ACS Nano. 2017;11:3797–805.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, Cai W, Yang H, Zhang H, Hao M, Yuan L, Liua J, Zhang L, Yang Y, Liu X, Deng J, Zhao P, Yange G, Duana Y. Annexin V conjugated nanobubbles: a novel ultrasound distinction agent for in vivo evaluation of the apoptotic response in most cancers remedy. J Management Launch. 2018;276:113–24.

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.