Visualization of the method of a nanocarrier-mediated gene supply: stabilization, endocytosis and endosomal escape of genes for intracellular spreading | Journal of Nanobiotechnology

0/5 No votes

Report this app

Description

[ad_1]

  • Hearth A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and particular genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Rij RP, Andino R. The silent remedy: RNAi as a protection towards virus an infection in mammals. Traits Biotechnol. 2006;24:186–93.

    PubMed 

    Google Scholar
     

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, et al. Management of coleopteran insect pests by RNA interference. Nat Biotechnol. 2007;25:1322–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Noticed PE, Track EW. siRNA therapeutics: A medical actuality. Sci China Life Sci. 2020;63:485–500.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu KY, Palli SR. Mechanisms, purposes, and challenges of insect RNA interference. Annu Rev Entomol. 2020;65:293–311.

    CAS 
    PubMed 

    Google Scholar
     

  • Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a possible new class of pharmaceutical medicine. Nat Chem Biol. 2006;2:711–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reischl D, Zimmer A. Drug supply of siRNA therapeutics: Potentials and limits of nanosystems. Nanomed-Nanotechnol. 2009;5:8–20.

    CAS 

    Google Scholar
     

  • Lee SJ, Kim MJ, Kwon IC, Roberts TM. Supply methods and potential targets for siRNA in main most cancers varieties. Adv Drug Ship Rev. 2016;104:2–15.

    CAS 

    Google Scholar
     

  • Value DRG, Gatehouse JA. RNAi-meidated crop safety agaisnt bugs. Traits Biotechnol. 2008;26:393–400.

    CAS 
    PubMed 

    Google Scholar
     

  • Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in bugs and potential of RNAi for pest management: a overview. J Insect Physiol. 2010;56:227–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Zotti MJ, Smagghe G. RNAi know-how for insect administration and safety of useful bugs from illnesses: Classes, challenges and danger assessments. Neotrop Entomol. 2015;44:197–213.

    CAS 
    PubMed 

    Google Scholar
     

  • Lü J, Guo W, Chen S, Guo M, Qiu B, Yang C, Zhang Y, Pan H. Double-stranded RNAs concentrating on HvRPS18 and HvRPL13 reveal potential targets for pest administration of the 28-spotted ladybeetle Henosepilachna vigintioctopunctata. Pest Manag Sci. 2020;76:2663–73.

    PubMed 

    Google Scholar
     

  • Wang Ok, Peng Y, Pu J, Fu W, Wang J, Han Z. Variation in RNAi efficacy amongst insect species is attributable to dsRNA degradation in vivo. Insect Biochem Molec. 2016;77:1–9.


    Google Scholar
     

  • Track H, Zhang J, Li D, Cooper AMW, Silver Ok, Li T, Liu X, Ma E, Zhu KY, Zhang JA. Double-stranded RNA degrading enzyme reduces the effectivity of oral RNA interfernece in migratory locust. Insect Biochem Molec. 2017;86:68–80.

    CAS 

    Google Scholar
     

  • Guan RB, Li HC, Fan YJ, Hu SR, Christiaens O, Smagghe G, Miao XX. A nuclease particular to lepidopteran bugs suppresses RNAi. J Biol Chem. 2018;293:6011–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prentice Ok, Smagghe G, Gheysen G, Christiaens O. Nuclease exercise decreases the RNAi response within the sweetpotato weevil Cylas puncticollis. Insect Biochem Molec. 2019;110:80–9.

    CAS 

    Google Scholar
     

  • Cooper AM, Silver Ok, Zhang J, Park Y, Zhu KY. Molecular mechanisms influencing effectivity of RNA interference in bugs. Pest Manag Sci. 2019;75:18–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Guan R, Chen Q, Li H, Hu S, Miao X, Wang G, Yang B. Knockout of the HaREase gene improves the steadiness of dsRNA and will increase the sensitivity of Helicoverpa armigera to Bacillus thuringiensis toxin. Entrance Physiol. 2019;10:1368.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the supply of medical, veterinary, and agricultural lively substances. ACS Nano. 2020;14:2678–701.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardo J, Peng Z, Leblanc RM. Most cancers concentrating on and drug supply utilizing carbon-based quantum dots and nanotubes. Molecules. 2018;23:378.

    PubMed Central 

    Google Scholar
     

  • Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for supply of small interfering RNA for therapeutic use. Eur J Pharm Sci. 2020;142:105159.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan S, Ren B, Zeng B, Shen J. Enhancing RNAi effectivity for pest management in crop species. Biotechniques. 2020;68:283–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan S, Ren BY, Shen J. Nanoparticle-mediated double-stranded RNA supply system: a promising method for sustainable pest administration. Insect Sci. 2021;28:21–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Zhang J, Zhu KY. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes by larval feeding within the African malaria mosquito (Anopheles gambiae). Insect Mol Biol. 2010;19:683–93.

    PubMed 

    Google Scholar
     

  • Parsons KH, Mondal MH, McCormick CL, Flynt AS. Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromol. 2018;19:1111–7.

    CAS 

    Google Scholar
     

  • Das S, Debnath N, Cui Y, Unrine J, Palli SR. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA supply for gene silencing in Aedes aegypti: A comparative evaluation. ACS Appl Mater Inter. 2015;7:19530–5.

    CAS 

    Google Scholar
     

  • Christiaens O, Tardajos MG, Reyna ZLM, Sprint M, Dubruel P, Smagghe G. Elevated RNAi efficacy in Spodoptera exigua through the formulation of dsRNA with guanylated polymers. Entrance Physiol. 2018;9:316.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin YH, Huang JH, Liu Y, Belles X, Lee HJ. Oral supply of dsRNA lipoplexes to german cockroach protects dsRNA From degradation and induces RNAi response. Pest Manag Sci. 2017;73:960–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine supply: Alternatives and challenges. Mol Pharmacol. 2012;9:2380–402.

    CAS 

    Google Scholar
     

  • Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi effectivity, systemic properties, and novel supply strategies for pest insect management: What we all know to date. Entrance Physiol. 2016;7:553.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelemans LC, Gurevich L. Drug supply with polymeric nanocarriers-cellular uptake mechanisms. Supplies. 2020;13:366.

    CAS 
    PubMed Central 

    Google Scholar
     

  • Ramasamy T, Munusamy S, Ruttala HB, Kim JO. Good nanocarriers for the supply of nucleic acid-based therapeutics: a complete overview. Biotechnol J. 2021;16:e1900408.

    PubMed 

    Google Scholar
     

  • Gurusamy D, Mogilicherla Ok, Shukla JN, Palli SR. Lipids assist double-stranded RNA in endosomal escape and enhance RNA interference within the fall armyworm Spodoptera frugiperda. Arch Insect Biochem. 2020;104:e21678.

    CAS 

    Google Scholar
     

  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: Relevance to drug supply. Cell Mol Life Sci. 2009;66:2873–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Zaki NM, Tirelli N. Gateways for the intracellular entry of nanocarriers: a overview of receptor-mediated endocytosis mechanisms and of methods in receptor concentrating on. Skilled Opin Drug Del. 2010;7:895–913.

    CAS 

    Google Scholar
     

  • Jhaveri A, Torchilin V. Intracellular supply of nanocarriers and concentrating on to subcellular organelles. Skilled Opin Drug Del. 2016;13:49–70.

    CAS 

    Google Scholar
     

  • Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran Ok, Nibert ML, Kirchhausen T. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell. 2004;118:591–605.

    CAS 
    PubMed 

    Google Scholar
     

  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.

    CAS 
    PubMed 

    Google Scholar
     

  • Shete HK, Prabhu RH, Patravale VB. Endosomal escape: a bottleneck in intracellular supply. J Nanosci Nanotechnol. 2014;14:460–74.

    CAS 
    PubMed 

    Google Scholar
     

  • He B, Chu Y, Yin M, Müllen Ok, An C, Shen J. Fluorescent nanoparticle delivered dsRNA towards genetic management of insect pests. Adv Mater. 2013;25:4580–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Hu Y, Yan S, Zhou H, Track D, Yin M, Shen J. A polymer/detergent formulation improves dsRNA penetration by the physique wall and RNAi-induced mortality within the soybean aphid Aphis glycines. Pest Manag Sci. 2019;75:1993–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Zheng Y, Zhang S, Liu Ok, Zhang S, Yin M, Zhang L, Shen J. Perylenediimide-cored cationic nanocarriers ship virus DNA to kill insect pests. Polym Chem. 2016;7:3740–6.

    CAS 

    Google Scholar
     

  • Zheng Y, You S, Ji C, Yin M, Yang W, Shen J. Improvement of an amino acid-functionalized fluorescent nanocarrier to ship a toxin to kill insect pests. Adv Mater. 2016;28:1375–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Qian J, Xu Y, Yan S, Shen J, Yin M. A facile-synthesized star polycation constructed as a extremely environment friendly gene vector in pest administration. ACS Maintain Chem Eng. 2019;7:6316–22.

    CAS 

    Google Scholar
     

  • Yan S, Qian J, Cai C, Ma Z, Li J, Yin M, Ren B, Shen J. Spray technique utility of transdermal dsRNA supply system for environment friendly gene silencing and pest management on soybean aphid Aphis glycines. J Pest Sci. 2019;93:449–59.


    Google Scholar
     

  • Guo S, Guo X, Zheng L, Zhao Z, Liu L, Shen J, Li Z. A possible genetic management by suppression of the wing developemental gene wingless in a alobal invasive pest Bactrocera dorsalis. J Pest Sci. 2021;94:517–29.


    Google Scholar
     

  • Wei H, Tan S, Yan S, Li Z, Shen J, Liu X. Nanocarrier-mediated transdermal dsRNA-NPF1 supply system contributes to pest management through inhibiting feeding habits in Grapholita molesta. J Pest Sci. 2021. https://doi.org/10.1007/s10340-021-01422-y.

    Article 

    Google Scholar
     

  • Zhang YH, Ma ZZ, Zhou H, Chao ZJ, Yan S, Shen J. Nanocarrier-delivered dsRNA suppresses wing growth of inexperienced peach aphids. Insect Sci. 2021. https://doi.org/10.1111/1744-7917.12953.

    Article 
    PubMed 

    Google Scholar
     

  • Ghosh A, Mukherjee Ok, Jiang X, Zhou Y, McCarroll J, Qu J, Swain PM, Baigude H, Rana TM. Design and meeting of latest nonviral RNAi supply brokers by microwave-assisted quaternization (MAQ) of tertiary amines. Bioconjugate Chem. 2010;21:1581–7.

    CAS 

    Google Scholar
     

  • Cook dinner AB, Peltier R, Hartlieb M, Whitfield R, Moriceau G, Burns JA, Haddleton DM, Perrier S. Cationic and hydrolysable branched polymers by RAFT for complexation and managed launch of dsRNA. Polym Chem. 2018;9:4025–35.

    CAS 

    Google Scholar
     

  • Doyle ML. Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol. 1997;8:31–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Grolier JPE, Del Río JM. Isothermal titration calorimetry: a thermodynamic interpretation of measurements. J Chem Thermodyn. 2012;55:193–202.

    CAS 

    Google Scholar
     

  • Ross PD, Subramanian S. Thermodynamics of protein affiliation reactions: forces contributing to stability. Biochemistry. 1981;20:3096–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan S, Hu Q, Li J, Chao Z, Cai C, Yin M, Du X, Shen J. A star polycation acts as a drug nanocarrier to enhance the toxicity and persistence of botanical pesticides. ACS Maintain Chem Eng. 2019;7:17406–13.

    CAS 

    Google Scholar
     

  • Yan S, Hu Q, Jiang Q, Chen H, Wei J, Yin M, Du X, Shen J. Easy osthole/nanocarrier pesticide effectively controls each pests and illnesses fulfilling the necessity of inexperienced manufacturing of strawberry. ACS Appl Mater Inter. 2021;13:36350–60.

    CAS 

    Google Scholar
     

  • Yan S, Cheng WY, Han ZH, Wang D, Yin MZ, Du XG, Shen J. Nanometerization of thiamethoxam by a cationic star polymer nanocarrier effectively enhances the contact and plant-uptake dependent abdomen toxicity towards inexperienced peach aphids. Pest Manag Sci. 2021;77:1954–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Zheng Ok, Cheng W, Li J, Liang X, Shen J, Dou D, Yin M, Yan S. Discipline utility of star polymer-delivered chitosan to amplify plant protection towards potato late blight. Chem Eng J. 2021;417:129327.

    CAS 

    Google Scholar
     

  • Garbutt JS, Bellés X, Richards EH, Reynolds SE. Persistence of double-stranded RNA in insect hemolymph as a possible determiner of RNA interference success: Proof from Manduca sexta and Blattella germanica. J Insect Physiol. 2013;59:171–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Bell JK, Askins J, Corridor PR, Davies DR, Segal DM. The dsRNA binding website of human toll-like receptor 3. P Natl Acad Sci USA. 2006;103:8792–7.

    CAS 

    Google Scholar
     

  • Peisley A, Hur S. Multi-level regulation of mobile recognition of viral dsRNA. Cell Mol Life Sci. 2013;70:1949–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E, Singh S, Mogilicherla Ok, Palli SR. Diminished stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran bugs. RNA Biol. 2016;13:656–69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kesharwani P, Gajbhiye V, Jain NK. A overview of nanocarriers for the supply of small interfering RNA. Biomaterials. 2012;33:7138–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Saleh MC, Van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol. 2006;8:793–802.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappelle Ok, de Oliveira CFR, van Eynde B, Christiaens O, Smagghe G. The involvement of clathrin-mediated endocytosis and two sid-1-like transmembrane proteins in double-stranded RNA uptake within the colorado potato beetle midgut. Insect Mol Biol. 2016;25:315–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-β receptor signaling and turnover. Nat Cell Biol. 2003;5:410–21.

    PubMed 

    Google Scholar
     

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for supply of biologicals. J Management Launch. 2011;151:220–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge speculation. J Gene Med. 2005;7:657–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The attainable “proton sponge” impact of polyethylenimine (PEI) doesn’t embody change in lysosomal PH. Mol Ther. 2013;21:149–57.

    CAS 
    PubMed 

    Google Scholar
     

  • Vermeulen LMP, De Smedt SC, Remaut Ok, Braeckmans Ok. The proton sponge speculation: fable or reality? Eur J Pharm Biopharm. 2018;129:184–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A flexible vector for gene and oligonucleotide switch into cells in tradition and in vivo: Polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonawane ND, Szoka FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA switch by polyamine-DNA polyplexes. J Biol Chem. 2003;278:44826–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, et al. RNA interference in Lepidoptera: An summary of profitable and unsuccessful research and implications for experimental design. J Insect Physiol. 2011;57:231–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Schmid SL. Clathrin-coated vesicle formation and protein sorting: An built-in course of. Annu Rev Biochem. 1997;66:511–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Nesbit MA, Hannan FM, Howles SA, Reed AAC, Cranston T, Thakker CE, Gregory L, Rimmer AJ, Rust N, Graham U, Morrison PJ, et al. Mutations in AP2S1 trigger familial hypocalciuric hypercalcemia sort 3. Nat Genet. 2013;45:93–7.

    CAS 
    PubMed 

    Google Scholar
     

  • D’Souza-Schorey C, Chavrier P. ARF proteins: Roles in membrane site visitors and past. Nat Rev Mol Cell Biol. 2006;7:347–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Adarska P, Wong-Dilworth L, Bottanelli F. ARF GTPases and their ubiquitous function in intracellular trafficking past the Golgi. Entrance Cell Dev Biol. 2021;9:679046.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Halloran TJ, Anderson RG. Clathrin heavy is required for pinocytosis, the presence of enormous vacuoles, and growth in dictyostelium. J Cell Biol. 1992;118:1371–7.

    PubMed 

    Google Scholar
     

  • Bazinet C, Katzen AL, Morgan M, Mahowald AP, Lemmon SK. The Drosophila clathrin heavy chain gene: clathrin operate is crucial in a multicellular organism. Genetics. 1993;134:1119–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao D, Gao X, Xu J, Liang X, Li Q, Yao J, Zhu KY. Clathrin-dependent endocytosis performs a predominant function in mobile uptake of double-stranded RNA within the crimson flour beetle. Insect Biochem Mol Biol. 2015;60:68–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma Z, Zhang Y, Li M, Chao Z, Du X, Yan S, Shen J. A primary greenhouse utility of bacteria-expressed and nanocarrier-delivered RNA pesticide for Myzus persicae management. J Pest Sci. 2022. https://doi.org/10.1007/s10340-022-01485-5.

    Article 

    Google Scholar
     

  • Singh IK, Singh S, Mogilicherla Ok, Shukla JN, Palli SR. Comparative evaluation of double-stranded RNA degradation and processing in bugs. Sci Rep. 2017;7:17059.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome meeting from RNA-Seq knowledge and not using a reference genome. Nat Biotechnol. 2011;29:644–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: correct alignment of transcriptomes within the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq knowledge with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two-∆∆CT technique. Strategies. 2001;25:402–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.